B Peculiar View of Density Matrices: Is There a Problem?

  • B
  • Thread starter Thread starter Heidi
  • Start date Start date
  • Tags Tags
    Density Matrices
Heidi
Messages
420
Reaction score
40
Hi Pfs , happy new year.
I wonder if there is a problem with the manner i see density matrices:
I use to consider them without a statistical point of view , just like i do with Hilbert vectors. no more no less. So the points on the Block sphere are only pecular points of those which are inside.
Of course if they can also describe mixtures of pure states in a statistical point of view.
is there a problem with that point of view?
 
Physics news on Phys.org
As for the titled question, I think yes because I have no idea for information to add to density matrix.
 
Heidi said:
Hi Pfs , happy new year.
I wonder if there is a problem with the manner i see density matrices:
I use to consider them without a statistical point of view , just like i do with Hilbert vectors. no more no less. So the points on the Block sphere are only pecular points of those which are inside.
Of course if they can also describe mixtures of pure states in a statistical point of view.
is there a problem with that point of view?
Could you give an example? Density matrices are used in more than one context, some of which might be more complete than others.
 
The quantum state of an arbitrary system is described by the statistical operator ##\hat{\rho}##, which is a positive semidefinite self-adjoint operator with trace 1. It's a pure state, if it can be written as ##\hat{\rho}=|\psi \rangle \langle \psi|## with some normalized vector ##|\psi \rangle##, i.e., iff ##\hat{\rho}^2=\hat{\rho}##.
 
  • Like
Likes physicsworks
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Back
Top