- #1
- 4
- 0
I am trying to show that (for 4x4 matrices) the representation given by equation 3.18 (Peskin and Schroeder, page 39):
[tex]
(J^{\mu\nu})_{\alpha\beta}
=i(\delta^{\mu}_{\alpha}\delta^{\nu}_{\beta}-\delta^{\mu}_{\beta}\delta^{\nu}_{\alpha})
[/tex]
implies the commutation relations in 3.17:
[tex]
[J^{\mu\nu},J^{\rho\sigma}]
=i(g^{\nu\rho}J^{\mu\sigma}-g^{\mu\rho}J^{\nu\sigma}-g^{\nu\sigma}J^{\mu\rho}+g^{\mu\sigma}J^{\nu\rho})
[/tex]
For some reason I cannot even get this to work for the [tex](\mu,\nu,\rho,\sigma)=(0,1,1,2)[/tex] component:
[tex]
[J^{01},J^{12}]_{\alpha\beta}
=J^{01}_{\alpha\gamma}J^{12}_{\gamma\beta}
-J^{12}_{\alpha\gamma}J^{01}_{\gamma\beta}
=i(\delta^0_{\alpha}\delta^1_{\gamma}-\delta^0_{\gamma}\delta^1_{\alpha})
i(\delta^1_{\gamma}\delta^2_{\beta}-\delta^1_{\beta}\delta^2_{\gamma})
-i(\delta^1_{\alpha}\delta^2_{\gamma}-\delta^1_{\gamma}\delta^2_{\alpha})
i(\delta^0_{\gamma}\delta^1_{\beta}-\delta^0_{\beta}\delta^1_{\gamma})
[/tex]
Now, sums like [tex]\delta^1_{\gamma}\delta^2_{\gamma}[/tex] vanish, whereas [tex]\delta^1_{\gamma}\delta^1_{\gamma}[/tex] is 1, so we get:
[tex]
[J^{01},J^{12}]_{\alpha\beta}=
-\delta^0_{\alpha}\delta^2_{\beta}
+\delta^0_{\beta}\delta^2_{\alpha}
=i(J^{02})_{\alpha\beta}
[/tex]
On the other hand, the right hand side of 3.17 was supposed to give us:
[tex]
i(g^{11}J^{02}-g^{01}J^{12}-g^{12}J^{01}+g^{02}J^{11})_{\alpha\beta}
=i((-1)J^{02}-0-0+0)_{\alpha\beta}=-i(J^{02})_{\alpha\beta}
[/tex]
ugh...
I suspect I messed up with the metric at some point, but I don't see where.
[tex]
(J^{\mu\nu})_{\alpha\beta}
=i(\delta^{\mu}_{\alpha}\delta^{\nu}_{\beta}-\delta^{\mu}_{\beta}\delta^{\nu}_{\alpha})
[/tex]
implies the commutation relations in 3.17:
[tex]
[J^{\mu\nu},J^{\rho\sigma}]
=i(g^{\nu\rho}J^{\mu\sigma}-g^{\mu\rho}J^{\nu\sigma}-g^{\nu\sigma}J^{\mu\rho}+g^{\mu\sigma}J^{\nu\rho})
[/tex]
For some reason I cannot even get this to work for the [tex](\mu,\nu,\rho,\sigma)=(0,1,1,2)[/tex] component:
[tex]
[J^{01},J^{12}]_{\alpha\beta}
=J^{01}_{\alpha\gamma}J^{12}_{\gamma\beta}
-J^{12}_{\alpha\gamma}J^{01}_{\gamma\beta}
=i(\delta^0_{\alpha}\delta^1_{\gamma}-\delta^0_{\gamma}\delta^1_{\alpha})
i(\delta^1_{\gamma}\delta^2_{\beta}-\delta^1_{\beta}\delta^2_{\gamma})
-i(\delta^1_{\alpha}\delta^2_{\gamma}-\delta^1_{\gamma}\delta^2_{\alpha})
i(\delta^0_{\gamma}\delta^1_{\beta}-\delta^0_{\beta}\delta^1_{\gamma})
[/tex]
Now, sums like [tex]\delta^1_{\gamma}\delta^2_{\gamma}[/tex] vanish, whereas [tex]\delta^1_{\gamma}\delta^1_{\gamma}[/tex] is 1, so we get:
[tex]
[J^{01},J^{12}]_{\alpha\beta}=
-\delta^0_{\alpha}\delta^2_{\beta}
+\delta^0_{\beta}\delta^2_{\alpha}
=i(J^{02})_{\alpha\beta}
[/tex]
On the other hand, the right hand side of 3.17 was supposed to give us:
[tex]
i(g^{11}J^{02}-g^{01}J^{12}-g^{12}J^{01}+g^{02}J^{11})_{\alpha\beta}
=i((-1)J^{02}-0-0+0)_{\alpha\beta}=-i(J^{02})_{\alpha\beta}
[/tex]
ugh...
I suspect I messed up with the metric at some point, but I don't see where.
Last edited: