I Potential Energy of an Electron-Nuclei Interaction in DFT

Dario56
Messages
289
Reaction score
48
TL;DR Summary
Potential Energy of Electron - Nuclei Interaction as a Functional of Electron Density
In density functional theory (DFT), electron density is a central quantity. Because of this, we want to calculate electron - nuclei potential energy as functional on electron density. If we know how potential energy varies across space, we can calculate this functional with plugging particular electron density into following equation:
$$ V[n] = \int V(r)n(r)d^3r $$
I am not sure where does this equation come from - it's derivation. Why does multiple ##V(r)n(r)## integrated over all space define this functional?
 
Physics news on Phys.org
Dario56 said:
Summary:: Potential Energy of Electron - Nuclei Interaction as a Functional of Electron Density

Why does multiple V(r)n(r) integrated over all space define this functional?
V(r)=-\frac{1}{4\pi\epsilon_0}\frac{Ze^2}{r}
and n(r) is density of electron cloud at r.
\int n(\mathbf{r}) d^3\mathbf{r} = Z
for neutral atom.
 
Last edited:
  • Like
Likes vanhees71 and PeroK
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...

Similar threads

Back
Top