I Potential Energy of an Electron-Nuclei Interaction in DFT

Dario56
Messages
289
Reaction score
48
TL;DR Summary
Potential Energy of Electron - Nuclei Interaction as a Functional of Electron Density
In density functional theory (DFT), electron density is a central quantity. Because of this, we want to calculate electron - nuclei potential energy as functional on electron density. If we know how potential energy varies across space, we can calculate this functional with plugging particular electron density into following equation:
$$ V[n] = \int V(r)n(r)d^3r $$
I am not sure where does this equation come from - it's derivation. Why does multiple ##V(r)n(r)## integrated over all space define this functional?
 
Physics news on Phys.org
Dario56 said:
Summary:: Potential Energy of Electron - Nuclei Interaction as a Functional of Electron Density

Why does multiple V(r)n(r) integrated over all space define this functional?
V(r)=-\frac{1}{4\pi\epsilon_0}\frac{Ze^2}{r}
and n(r) is density of electron cloud at r.
\int n(\mathbf{r}) d^3\mathbf{r} = Z
for neutral atom.
 
Last edited:
  • Like
Likes vanhees71 and PeroK
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Back
Top