MHB Problem of the Week #124 - August 11th, 2014

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The problem involves finding the probability that a Geometric random variable \( Y \) is greater than a Poisson random variable \( X \). The solution shows that \( \mathbb{P}(Y > X) = e^{-\lambda p} \), derived from the relationship \( \mathbb{P}(Y > X) = 1 - \mathbb{P}(X \geq Y) \). The calculations utilize the probability mass functions of both distributions and involve summations that lead to the final result. The key steps include evaluating the sums of the Poisson and Geometric distributions and applying the exponential series. Ultimately, the probability simplifies to \( e^{-\lambda p} \).
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here's this week's problem!

-----

Problem: Let $X$ be a Poisson random variable with parameter $\lambda$, and let $Y$ be a Geometric random variable with parameter $p$ which is independent of $X$. In simplest terms of $\lambda$ and $p$, what is the value of $\Bbb{P}(Y>X)$?

Recall: The Poisson pmf is given by $f(x) = \dfrac{e^{-\lambda}\lambda^x}{x!}$ (with support $x\geq0$) and the Geometric pmf is given by $f(x) = p(1-p)^{x-1}$ (with support $x\geq 1$).

-----Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
This week's problem was correctly answered by laura123. You can find her solution below.

[sp]$X$ is a Poisson random variable with parameter $\lambda$ and $Y$ is a Geometric random variable with parameter $p$ then $\mathbb{P}(X=n)=\dfrac{e^{-\lambda}\lambda^n}{n!}$ and $\mathbb{P}(Y=m)=pq^{m-1}$ where $q=1-p$, with $n\geq0$ and $m\geq 1$.
$\mathbb{P}(Y>X)=1-\mathbb{P}(X\geq Y)$. Let us find the value of $\mathbb{P}(X\geq Y)$:

$\begin{aligned}\displaystyle\mathbb{P}(X\geq Y) &= \sum_{n=1}^{+\infty}\mathbb{P}[X=n\wedge(Y=1\vee...\vee Y=n)]\\ &=\sum_{n=1}^{+\infty}\left[\dfrac{e^{-\lambda}\lambda^n}{n!}\cdot \sum_{m=1}^{n}pq^{m-1}\right]\\ & =\sum_{n=1}^{+\infty}\left[\dfrac{e^{-\lambda}\lambda^n}{n!}\cdot p \sum_{m=1}^{n}q^{m-1}\right]\\ & =\sum_{n=1}^{+\infty}\left[\dfrac{e^{-\lambda}\lambda^n}{n!}\cdot p \dfrac{1-q^n}{1-q}\right]\\ & =\sum_{n=1}^{+\infty}\left[\dfrac{e^{-\lambda}\lambda^n}{n!}\cdot p \dfrac{1-q^n}{1-1+p}\right]\\ & =\sum_{n=1}^{+\infty}\left[\dfrac{e^{-\lambda}\lambda^n}{n!} \cdot(1-q^n)\right] \\ & =
e^{-\lambda}\sum_{n=1}^{+\infty}\left[\dfrac{\lambda^n}{n!}\cdot(1-q^n)\right] \\ & =
e^{-\lambda}\sum_{n=1}^{+\infty}\left[\dfrac{\lambda^n}{n!}-\dfrac{\lambda^n}{n!}q^n\right] \\ & =
e^{-\lambda}\sum_{n=1}^{+\infty}\left[\dfrac{\lambda^n}{n!}-\dfrac{(\lambda q)^n}{n!}\right] \\ & =
e^{-\lambda}\left[\sum_{n=1}^{+\infty}\dfrac{\lambda^n}{n!}-\left(\sum_{n=1}^{+\infty}\dfrac{(\lambda q)^n}{n!}\right)\right]
\end{aligned}$

because $\displaystyle e^x-1=\sum_{n=1}^{+\infty}\dfrac{x^n}{n!}$ then $\displaystyle\sum_{n=1}^{+\infty}\dfrac{\lambda^n}{n!}=e^{\lambda}-1$ and $\displaystyle\sum_{n=1}^{+\infty}\dfrac{(\lambda q)^n}{n!}=e^{\lambda q}-1$.

Therefore
$\displaystyle e^{-\lambda}\left[\sum_{n=1}^{+\infty}\dfrac{\lambda^n}{n!}-\left(\sum_{n=1}^{+\infty}\dfrac{(\lambda q)^n}{n!}\right)\right]=
e^{-\lambda}[e^{\lambda}-1-e^{\lambda q}+1]=
e^{-\lambda}[e^{\lambda}-e^{\lambda q}]=
e^{-\lambda}[e^{\lambda}-e^{\lambda -\lambda p}]=
1-e^{-\lambda p}$.

Then $\mathbb{P}(Y>X)=1-\mathbb{P}(X\geq Y)=1-(1-e^{-\lambda p})=e^{-\lambda p}$[/sp]
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K