Problem Of The Week # 290 - Nov 24, 2017

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2017
Click For Summary
SUMMARY

The discussion centers on proving that any root \( r \) of the polynomial \( P(z) = a_0 z^n + a_1 z^{n-1} + \cdots + a_n \), where \( a_0 \ge a_1 \ge a_2 \ge \cdots \ge a_n \ge 0 \), satisfies \( |r| \le 1 \). The proof utilizes the properties of polynomial roots and the triangle inequality, demonstrating that assuming \( |r| > 1 \) leads to a contradiction. This establishes that all roots of the polynomial lie within or on the unit circle in the complex plane.

PREREQUISITES
  • Understanding of polynomial functions and their roots
  • Familiarity with the triangle inequality in complex analysis
  • Knowledge of basic properties of inequalities
  • Experience with mathematical proofs and logical reasoning
NEXT STEPS
  • Study the properties of polynomial roots, specifically theorems related to root bounds
  • Learn about the triangle inequality and its applications in complex analysis
  • Explore the implications of the unit circle in the context of polynomial roots
  • Investigate related mathematical challenges, such as those found in the MAA 500 Mathematical Challenges
USEFUL FOR

Mathematicians, students studying complex analysis, and anyone interested in polynomial root behavior and mathematical proofs.

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Happy Thanksgiving, for those of you in the USA! Here is this week's POTW (not a Putnam this week!):

-----

If $a_0\ge a_1 \ge a_2\ge \cdots\ge a_n\ge 0,$ prove that any root $r$ of the polynomial
$$P(z)\equiv a_0 z^n+a_1 z^{n-1}+\cdots+a_n$$
satisfies $|r|\le 1$; i.e., all the roots lie inside or on the unit circle centered at the origin in the complex plane.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to Opalg for his correct solution to this Problem 412 of the MAA 500 Mathematical Challenges. The solution follows:

[sp]If $r$ is a root of $P(z)$ then it is also a root of $(z-1)P(z) = a_0z^{n+1} - (a_0 - a_1)z^n - (a_1 - a_2)z^{n-1} - \ldots - (a_{n-1} - a_n)z - a_n$, so that $$a_0r^{n+1} = (a_0 - a_1)r^n + (a_1 - a_2)r^{n-1} + \ldots + (a_{n-1} - a_n)r + a_n.$$ Take the absolute value of both sides and use the triangle inequality, to get $$ \begin{aligned} a_0|r|^{n+1} &= \bigl|(a_0 - a_1)r^n + (a_1 - a_2)r^{n-1} + \ldots + (a_{n-1} - a_n)r + a_n \bigr| \\ &\leqslant (a_0 - a_1)|r|^n + (a_1 - a_2)|r|^{n-1} + \ldots + (a_{n-1} - a_n)|r| + a_n.\end{aligned}$$ Now suppose that $|r| > 1$. Then $$\begin{aligned} a_0|r|^{n+1} &\leqslant (a_0 - a_1)|r|^n + (a_1 - a_2)|r|^n + \ldots + (a_{n-1} - a_n)|r|^n + a_nr^n. \\ &= \bigl( (a_0 - a_1) + (a_1 - a_2) + \ldots + (a_{n-1} - a_n) + a_n \bigr)|r|^n \\ &= a_0|r|^n <a_0|r|^{n+1}. \end{aligned}$$ That is a contradiction, and therefore each root $r$ must satisfy $|r|\leqslant 1$.[/sp]
 

Similar threads

Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
1K