MHB Problem of the Week #80 - October 7th, 2013

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The problem presented involves proving the integral \(\int_0^1 (1-x^2)^n\,dx = \frac{2^{2n}(n!)^2}{(2n+1)!}\) for \(n \geq 0\). Participants suggested starting with the recursive relation \(I_{k+1} = \frac{2k+2}{2k+3}I_k\) to derive the solution. Both anemone and MarkFL provided detailed solutions using trigonometric substitution and integration by parts, respectively. Their approaches led to the same conclusion, confirming the formula through iterative calculations. The discussion emphasizes the importance of mathematical techniques in solving integrals effectively.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks again to those who participated in last week's POTW! Here's this week's problem!

-----

Problem: For $n\geq 0$, show that
\[\int_0^1 (1-x^2)^n\,dx = \frac{2^{2n}(n!)^2}{(2n+1)!}.\]

-----

Hint
: [sp]Start by showing that if $I_n$ denotes the integral, then
\[I_{k+1}=\frac{2k+2}{2k+3}I_k.\][/sp]

 
Physics news on Phys.org
This week's question was correctly answered by anemone and MarkFL. You can find both of their solutions below.

anemone's solution: [sp]We're asked to prove that [math]\int_0^1(1-x^2)^n dx=\frac{2^{2n}(n!)^2}{(2n+1)!}[/math].

First, let's examine the LHS expression, the definite integral, [math]\int_0^1(1-x^2)^n dx[/math],

Using the following trigonometric substitution,

[math]x=\sin \theta[/math] [math]\rightarrow dx=\cos \theta d\theta[/math]

The integral is now

[math]\int_0^{\frac{\pi}{2}} \cos^{2n} \theta \cos \theta d\theta=\int_0^{\frac{\pi}{2}} \cos^{2n+1} \theta d\theta[/math]

Using the integration by parts with the following substitution:

[math]u=\cos^{2n} \theta\;\;\rightarrow\;\;\frac{du}{d\theta}=2n (\cos^{2n-1} \theta)(-\sin \theta)[/math]

[math]\frac{dv}{d\theta}=\cos \theta\;\;\rightarrow\;\;v=\sin \theta[/math]

The integral is then

[math]\int_0^{\frac{\pi}{2}} \cos^{2n+1} \theta d\theta=\left[(\cos^{2n} \theta)(\sin \theta) \right]_0^{\frac{\pi}{2}}-\int_0^{\frac{\pi}{2}} 2n (\cos^{2n-1} \theta)(-\sin \theta)(\sin \theta)d \theta[/math]

[math]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=(0)+2n\int_0^{\frac{\pi}{2}} (\sin^2 \theta)(\cos^{2n-1} \theta)d \theta[/math]

[math]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=2n\int_0^{\frac{\pi}{2}} (1-\cos^2 \theta)(\cos^{2n-1} \theta)d \theta[/math]

[math]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=2n\int_0^{\frac{\pi}{2}} (\cos^{2n-1} \theta)d \theta-2n\int_0^{\frac{\pi}{2}} (\cos^{2n+1} \theta)d \theta[/math]

[math](2n+1)\int_0^{\frac{\pi}{2}} \cos^{2n+1} \theta d\theta =2n\int_0^{\frac{\pi}{2}} (\cos^{2n-1} \theta)d \theta[/math]

[math]\int_0^{\frac{\pi}{2}} \cos^{2n+1} \theta d\theta =\frac{2n}{2n+1}\int_0^{\frac{\pi}{2}} (\cos^{2n-1} \theta)d \theta[/math]

If we let [math]I_n=\int_0^1(1-x^2)^n dx=\int_0^{\frac{\pi}{2}} \cos^{2n+1} \theta d\theta[/math], we now have

[math]I_n=\frac{2n}{2n+1}I_{n-1}[/math]

[math]I_n=\frac{2n}{2n+1}I_{n-1}[/math]

[math]\;\;\;\;=\frac{2n}{2n+1}\cdot\frac{2(n-1)}{2(n-1)+1}I_{n-2}[/math]

[math]\;\;\;\;=\frac{2n}{2n+1}\cdot\frac{2(n-1)}{2(n-1)+1}\cdot\frac{2(n-2)}{2(n-2)+1}I_{n-3}[/math]

[math]\;\;\;\;=\frac{2n}{2n+1}\cdot\frac{2(n-1)}{2(n-1)+1}\cdot\frac{2(n-2)}{2(n-2)+1}\cdots\frac{6}{7}\cdot\frac{4}{5}\cdot\frac{2}{3}[/math]

[math]\;\;\;\;=\left(\frac{2n}{2n+1}\cdot\frac{2(n-1)}{2(n-1)+1}\cdot\frac{2(n-2)}{2(n-2)+1}\cdots\frac{6}{7}\cdot\frac{4}{5}\cdot\frac{2}{3} \right)\left(\frac{2n}{2n}\cdot\frac{2(n-1)}{2(n-1)}\cdot\frac{2(n-2)}{2(n-2)}\cdots\frac{6}{6}\cdot\frac{4}{4}\cdot\frac{2}{2} \right)[/math]

[math]\;\;\;\;=\frac{((2n)(2(n-1))(2(n-2))\cdots(6)(4)(2))^2}{(2n+1)(2n))\cdots(6)(5)(4)(3)(2)(1)}[/math]

[math]\;\;\;\;=\frac{(2^n(n)(n-1)(n-2)\cdots(3)(2)(1))^2}{(2n+1)!}[/math]

[math]\;\;\;\;=\frac{(2^n(n!))^2}{(2n+1)!}[/math]

[math]\;\;\;\;=\frac{2^{2n}(n!)^2}{(2n+1)!}[/math]

and we're done![/sp]

MarkFL's solution: [sp]Let:

$$I_n=\int_0^1\left(1-x^2 \right)^n\,dx$$

Apply integration by parts, where:

$$u=\left(1-x^2 \right)^n\,\therefore\,du=n\left(1-x^2 \right)^{n-1}(-2x)\,dx$$

$$dv=dx\,\therefore\,v=x$$

And we may state:

$$I_n=\left[x\left(1-x^2 \right)^n \right]_0^1+2n\int_0^1 x^2\left(1-x^2 \right)^{n-1}\,dx$$

$$I_n=0-2n\int_0^1 \left(1-x^2-1 \right)\left(1-x^2 \right)^{n-1}\,dx$$

$$I_n=-2n\left(\int_0^1 \left(1-x^2 \right)^{n}\,dx-\int_0^1 \left(1-x^2 \right)^{n-1}\,dx \right)$$

Now, using the definition of the definite integral we may write:

$$I_n=2n\left(I_{n-1}-I_n \right)$$

Solving for $I_n$, we find:

$$(2n+1)I_n=2nI_{n-1}$$

$$I_n=\frac{2n}{2n+1}I_{n-1}$$

Now, we should observe that:

$$I_0=\int_0^1\left(1-x^2 \right)^0\,dx=1$$

Iterating all the way down to $n=0$, we have:

$$I_n=\frac{(2n)(2(n-1)(2(n-2))\cdots6\cdot4\cdot2}{(2n+1)(2n-1)(2n-3)\cdots7\cdot5\cdot3}\cdot1$$

Multiplying by $$1=\frac{(2n)(2(n-1)(2(n-2))\cdots6\cdot4\cdot2\cdot1}{(2n)(2(n-1)(2(n-2))\cdots6\cdot4\cdot2\cdot1}$$ we have:

$$I_n=\frac{\left((2n)(2(n-1)(2(n-2))\cdots6\cdot4\cdot2\cdot1 \right)^2}{(2n+1)(2n)(2n-1)(2n-2)(2n-3)(2n-4)\cdots7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1}$$

$$I_n=\frac{\left(2^n\cdot n! \right)^2}{(2n+1)!}$$

$$I_n=\frac{2^{2n}(n!)^2}{(2n+1)!}$$

Shown as desired.[/sp]
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K