Proof by Contradiction: Converse of A(n) Holds for All n ∈ Z

Click For Summary

Homework Help Overview

The discussion revolves around a proof by contradiction related to the converse of a mathematical statement concerning integers. The original statement asserts that if \( n = 3q + 1 \) or \( n = 3q + 2 \) for some integer \( q \), then \( n^2 = 3t + 1 \) for some integer \( t \). Participants are exploring how to prove the converse of this statement for all integers.

Discussion Character

  • Exploratory, Assumption checking, Conceptual clarification

Approaches and Questions Raised

  • Participants discuss the validity of assuming \( n^2 \neq 3t + 1 \) while trying to prove the converse. There is a question about whether this leads to a contradiction and how to structure the proof correctly.

Discussion Status

Some participants clarify the distinction between proving the original statement and its converse. There is an acknowledgment of confusion regarding the proof structure, with suggestions to focus on the correct assumptions needed for a proof by contradiction.

Contextual Notes

There is a noted confusion about notation, specifically regarding the representation of \( n^2 \). Participants are also addressing the specific requirements of the homework task, which involves proving the converse rather than the original statement.

UOAMCBURGER
Messages
31
Reaction score
1

Homework Statement


“If n = 3q + 1 or n = 3q + 2 for some q ∈ Z, then n 2 = 3t + 1 for some t ∈ Z.”
Use proof by contradiction to show that the converse of A(n) is true for all n ∈ Z.
For the proof by contradiction, on the answer sheet provided they have assumed n^2 = 3t+1 but n != 3q+1 and n != 3q+2.

Is it possible to have a valid proof by contradiction if you were to assume n = 3q+1 or n = 3q+2 is true for some n in Z, but n^2 != 3t+1 and then show that you can get n^2 into the form 3(.t..) + 1 ? where 3(.t..) is just obviously some multiple of 3... Hence a contradiction.?
 
Last edited by a moderator:
Physics news on Phys.org
UOAMCBURGER said:
Is it possible to have a valid proof by contradiction if you were to assume n = 3q+1 or n = 3q+2 is true for some n in Z, but n^2 != 3t+1 and then show that you can get n^2 into the form 3(.t..) + 1 ? where 3(.t..) is just obviously some multiple of 3... Hence a contradiction.?
This would not be a proof by contradiction. It would just be proving the statement “If n = 3q + 1 or n = 3q + 2 for some q ∈ Z, then n 2 = 3t + 1 for some t ∈ Z” directly. The assumption that n^2 ##\ne## 3t+1 would be superfluous.
 
Last edited by a moderator:
tnich said:
This would not be a proof by contradiction. It would just be proving the statement “If n = 3q + 1 or n = 3q + 2 for some q ∈ Z, then n 2 = 3t + 1 for some t ∈ Z” directly. The assumption that n^2 ##\ne## 3t+1 would be superfluous.
Also, the problem is to prove the converse, not the original statement. So what you need to prove is
##\forall t, n \in \mathbb Z ## such that ## n^2=3t+1, \exists q \in \mathbb Z ## such that ## n=3q+1## or ##n=3q+2##
 
tnich said:
Also, the problem is to prove the converse, not the original statement. So what you need to prove is
##\forall t, n \in \mathbb Z ## such that ## n^2=3t+1, \exists q \in \mathbb Z ## such that ## n=3q+1## or ##n=3q+2##
oh that is why i was getting confused, because given statement A>B for a proof by contradiction you get A>~B and show some contradiction, hence my question about the order of the proof. I see what I've done, thanks.
 
UOAMCBURGER said:

Homework Statement


“If n = 3q + 1 or n = 3q + 2 for some q ∈ Z, then n 2 = 3t + 1 for some t ∈ Z.”
Use proof by contradiction to show that the converse of A(n) is true for all n ∈ Z.
For the proof by contradiction, on the answer sheet provided they have assumed n^2 = 3t+1 but n != 3q+1 and n != 3q+2.

Is it possible to have a valid proof by contradiction if you were to assume n = 3q+1 or n = 3q+2 is true for some n in Z, but n^2 != 3t+1 and then show that you can get n^2 into the form 3(.t..) + 1 ? where 3(.t..) is just obviously some multiple of 3... Hence a contradiction.?

Is n 2 supposed to be ##n^2?## If so, write it properly, as n^2.
 
Ray Vickson said:
Is n 2 supposed to be ##n^2?## If so, write it properly, as n^2.
yes its meant to be n2, and obviously I did NOT intentionally write it as n 2 ...
 

Similar threads

Replies
27
Views
4K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
12
Views
4K
Replies
4
Views
2K
Replies
14
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K