Propagating Measurement Uncertainty into a Linear Regression Model

Click For Summary
Combining uncertainty in both x and y measurements into the standard error of a linear regression model is a complex issue. The standard error typically accounts for vertical errors in y, but integrating individual measurement errors into the regression error requires a more nuanced approach. One suggested method is to use a variance matrix to account for different error distributions in y, allowing for a more accurate estimation of regression coefficients. While Monte Carlo simulations can provide a solution, there is a desire for a simpler analytical method to achieve this integration. Ultimately, understanding how to effectively propagate measurement uncertainty is crucial for accurate flux calculations in linear regression analysis.
lschong
Messages
2
Reaction score
0
I am trying to figure out how to combine uncertainty (in x and y) into the standard error of the best fit line from the linear regression for that dataset.

I am plotting units of concentration (x) versus del t/height (y) to get a value for the flux (which is the slope)

I understand how to get the standard error of the best fit line, but that only gives the error in y in relation to the best fit line. Is there a good way to combine that error with the error from the individual measurements?

For example:
(x) (y)
delt/h Conc.
0.00 563.84
2.39 568.77
3.53 566.64
11.03 572.59

The error in each y measurement is 9%

When I do the linear regression, I get a slope of .71 and an error of .21

Is there a (relatively) simple way to propagate the 9% error into the regression error?
 
Physics news on Phys.org
Putting aside the errors in the x values, the regression error already includes the errors in y.
 
Are you referring to the standard error of the regression line? I know that the standard error includes all the vertical error from each point to the line, but what I want to do is take into account the vertical error in each data point with respect to the line.

So, my first point y = 531 +/- 51 and the second point y = 540+/- 46 and so on. How do I integrate the +/- values for each data point into the error for the linear regression?

Thanks.
 
The computationally easy way is to generate random numbers for each y. For y = 531 +/- 51, you could generate (say) 10 uniform random numbers with mean = 531 and range = +/- 51, all matched to the same x value.
 
Hi,
I would like to do the same thing as Ischong. Is there an analytical way rather than using Monte-Carlo simulation as someone suggests. I know that simulation will surely work but need more simple way as the model is just linear regression.

Sincerely yours,
 
Suppose you have T observations and K variables. Suppose you also know the distribution of each y[t]; for example, y[t] ~ N(m[t], s[t]), t = 1 to T. If s[t] is constant for all t, then you have the standard OLS model. If s[t] is different for each t, then each error term u[t] is distributed N(0, s[t]). Since you know s[t] for all t, you can define the matrix \bold\Phi_{T\times T} = diag(s[t]^2) as the variance matrix (of the errors). Then

\hat{\beta}=\left(X'\bold\Phi^{-1}X\right)^{-1}X'\bold\Phi^{-1}y

is the best linear unbiased estimator of the regression coefficient vector.
 
If there are an infinite number of natural numbers, and an infinite number of fractions in between any two natural numbers, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and... then that must mean that there are not only infinite infinities, but an infinite number of those infinities. and an infinite number of those...

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 30 ·
2
Replies
30
Views
4K
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 23 ·
Replies
23
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 64 ·
3
Replies
64
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K