MHB Prove $5x+9y=n$ Solutions for $n \ge 32$, $\mathbb{Z}_0^+$

  • Thread starter Thread starter ssome help
  • Start date Start date
ssome help
Messages
3
Reaction score
0
Prove that $n \ge \$32$ can be paid in \$5 and \$9 dollar bills ie the equation $5x+9y=n$ has solutions $x$ and $y$ element $\mathbb{Z}_0^+$ for $n$ element of $\mathbb{Z}^+$ and $n \ge 32$.
 
Last edited by a moderator:
Physics news on Phys.org
Re: $ solutions

ssome help said:
Prove that $n >=(greater than or equal to) 32 can be paid in $5 and $9 dollar bills ie the equation 5x+9y=n has solutions x and y element (Z(sub0)^+) for n element of Z^+ and n >=32.

See a similar problem here.

On this forum, the dollar sign starts a "mathematical mode" where one can use special commands to produce symbols like $\pi$ and $\int$. If you want to write a dollar sign, you can type dollar, backslash and two dollars, like this: $\$$.
 
Re: $ solutions

Alternatively you can type:
Code:
\$
which comes out as \$.
 
Re: $ solutions

ssome help said:
Prove that $n >=(greater than or equal to) 32 can be paid in $5 and $9 dollar bills ie the equation 5x+9y=n has solutions x and y element (Z(sub0)^+) for n element of Z^+ and n >=32.
induction at n for n=32 x=1,y=3
5 + 3(9) = 32
note that 1 = 2(5) - 9
so 33 = 5 + 2(5) + 3(9) - 9
suppose it is true for k>=32 integer there exist a positive integers x,y such that

5x + 9y = k
for k+1
k+1 = 5x + 9y +1
choose 1 = 2(5) - 9, if y>=1
if y = 0
then k multiple of 5 which is 35 or larger, x>=7 so choose
1= -7(5) + 4(9)
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top