Only if part:
Assume ##H## is Hermitian. Then
\begin{align*}
H^\dagger = H
\end{align*}
implies
\begin{align*}
H^\dagger H = H^2 .
\end{align*}
Meaning if ##H^\dagger H \not= H^2## then ##H## couldn't be Hermitian.
If part:
Assume ##H^2 = H^\dagger H##. As ##H^2 = H^\dagger H## is Hermitian its eigenvectors form a basis for the vector space ##V = \mathbb{C}^n##. We can define an inner product. If ##\{ e_i \}_{i =1,2 \dots , n}## is an orthonormal basis for ##V##, ##u = \sum_{i=1}^n a_i e_i## and ##v = \sum_{j=1}^n b_j e_j##, then we define the inner product as:
\begin{align*}
<u,v> := \sum_{i=1}^n a_i^* b_i
\end{align*}
Obviously, ##H u = 0## implies ##H^2 u = 0##. We have
\begin{align*}
\| H u \|^2 = < H u , H u > = <u , H^\dagger H u > = <u , H^2 u>
\end{align*}
from which we have ##H^2 u = 0## implies ##H u = 0##. Therefore,
\begin{align*}
\ker (H) = \ker (H^2)
\end{align*}
Label the eigenvectors of ##H^2## with non-zero eigenvalues by ##e_\alpha## with ##\alpha = 1,2, \dots, N## (##N \leq n##). They form a basis for ##\ker (H)^\perp##. Denote the eigenvalue of ##e_\alpha## by ##\lambda_\alpha##.
Note that as ##H^2 e_\alpha = \lambda_\alpha e_\alpha##, we have that ##<u , H^2 e_\alpha> = 0## for all ##\alpha## if and only if ##u \in \ker H##. Note ##H u \in \ker H## if and only if ##Hu =0##. We have
\begin{align*}
<u , H^\dagger H^2 e_\alpha > = <u , H^3 e_\alpha> ,
\end{align*}
from which we have
\begin{align*}
<H u , H^2 e_\alpha > = <H^\dagger u , H^2 e_\alpha > .
\end{align*}
Thus, we have ##H u=0## if and only if ##H^\dagger u \in \ker H##. So if ##H u =0## then ##H H^\dagger u=0##. If ##H u \not=0## then ##H H^\dagger u \not=0##. Thus
\begin{align*}
\ker (H) = \ker (H H^\dagger)
\end{align*}
Note ##(H^\dagger)^2 = H^\dagger H = H^2## and so ##H^\dagger u=0## implies ##H^2 u=0##. We have
\begin{align*}
\| H^\dagger u \|^2 = < H^\dagger u , H^\dagger u > = <u , H H^\dagger u >
\end{align*}
from which we have ##H^2 u = 0## implies ##H^\dagger u = 0##. Thus
\begin{align*}
\ker (H^\dagger) = \ker (H^2)
\end{align*}
So from this and ##\ker (H) = \ker (H^2)##:
\begin{align*}
\ker (H) = \ker (H^\dagger) .
\end{align*}Now, assume ##u \not\in \ker (H)##, so that ##Hu \not\in \ker H## and ##H^\dagger u \not\in \ker H##. Then from
\begin{align*}
<H u , H^2 e_\alpha > = <H^\dagger u , H^2 e_\alpha >
\end{align*}
we have
\begin{align*}
<H u - H^\dagger u , \lambda_\alpha e_\alpha > = 0 .
\end{align*}
Since the ##\{ e_\alpha \}_{\alpha = 1,2, \dots , N}## form a basis for ##\ker (H)^\perp##,
\begin{align*}
H u = H^\dagger u \qquad \text{for arbitrary } u \in \ker (H)^\perp .
\end{align*}
As ##H u = H^\dagger u## for all ##u \in V##,
\begin{align*}
H = H^\dagger .
\end{align*}