Prove that ## 7, 11 ##, and ## 13 ## all divide ## N ##

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on proving that the integers 7, 11, and 13 all divide a positive integer N, given that N can be expressed in decimal form. The proof utilizes the fact that 7 × 11 × 13 = 1001, and it examines two cases based on whether the number of digits in N is even or odd. The conclusion is that N is congruent to 0 modulo 1001, thus confirming that 7, 11, and 13 divide N if and only if they divide a specific integer M derived from the digits of N.

PREREQUISITES
  • Understanding of modular arithmetic
  • Familiarity with polynomial expressions and their properties
  • Knowledge of divisibility rules for integers
  • Basic grasp of number theory concepts
NEXT STEPS
  • Study modular arithmetic applications in number theory
  • Explore the properties of polynomial congruences
  • Learn about the Chinese Remainder Theorem
  • Investigate further into divisibility and prime factorization
USEFUL FOR

This discussion is beneficial for mathematicians, students studying number theory, and anyone interested in understanding divisibility and modular arithmetic in integers.

Math100
Messages
817
Reaction score
230
Homework Statement
Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##, be the decimal expansion of a positive integer ## N ##.
Prove that ## 7, 11 ##, and ## 13 ## all divide ## N ## if and only if ## 7, 11 ##, and ## 13 ## divide the integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
[Hint: If ## n ## is even, then ## 10^{3n}\equiv 1, 10^{3n+1}\equiv 10, 10^{3n+2}\equiv 100\pmod {1001} ##; if ## n ## is odd, then ## 10^{3n}\equiv -1, 10^{3n+1}\equiv -10, 10^{3n+2}\equiv -100\pmod {1001} ##.]
Relevant Equations
None.
Proof:

Assume that ## 7, 11 ##, and ## 13 ## all divide ## N ##.
Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##,
be the decimal expansion of a positive integer ## N ##.
Observe that ## 7\cdot 11\cdot 13=1001 ##.
Now we consider two cases.
Case #1: Suppose ## n ## is even.
Then ## 10^{3n}\equiv 1\implies 10^{3n+1}\equiv 10 ##.
Thus ## 10^{3n+2}\equiv 100\pmod {1001} ##.
Case #2: Suppose ## n ## is odd.
Then ## 10^{3n}\equiv -1\implies 10^{3n+1}\equiv -10 ##.
Thus ## 10^{3n+2}\equiv -100\pmod {1001} ##.
Since ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}\equiv [(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb]\pmod {1001} ##, it follows that ## N\equiv 0\pmod {1001} ##.
Thus ## 7, 11 ##, and ## 13 ## divide the integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
Conversely, suppose ## 7, 11 ##, and ## 13 ## divide the integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
Note that ## 7\cdot 11\cdot 13=1001 ##.
Then ## (100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb\equiv 0\pmod {1001} ##.
This means ## a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}\equiv 0\pmod {1001}\implies N\equiv 0\pmod {1001} ##.
Thus ## 7, 11 ##, and ## 13 ## all divide ## N ##.
Therefore, ## 7, 11 ##, and ## 13 ## all divide ## N ## if and only if ## 7, 11 ##, and ## 13 ## divide the integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
 
Physics news on Phys.org
What happens at the end of the line? Your proof works well if ##6\,|\,m## so you can group the numbers in packages of three even ##n## and three odd ##n##, but what happens in the five other cases?
 
fresh_42 said:
What happens at the end of the line? Your proof works well if ##6\,|\,m## so you can group the numbers in packages of three even ##n## and three odd ##n##, but what happens in the five other cases?
I don't understand. If ## 6\mid m ##, then how can I group them in packages of three even...? How can this be applied?
 
## (100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb\pmod {6} ##
 
Math100 said:
I don't understand. If ## 6\mid m ##, then how can I group them in packages of three even...? How can this be applied?
You start with
\begin{align*}
1001\,|\,N&=(100a_{2}+10a_{1}+a_{0})\cdot 10^0+(100a_{5}+10a_{4}+a_{3})\cdot 10^3+(100a_{8}+10a_{7}+a_{6})\cdot 10^6\mp \dotsb\\
&\equiv (100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})\mp \dotsb =M \pmod {1001}
\end{align*}

Oh, now I see that ##1001\,|\,M.##

The other direction is the same, only that we start with ##1001\,|\,M=\ldots \equiv N\pmod {1001} ##

I mistakenly first thought that you would group the polynomial as packages of three with alternating signs:
$$
N=\underbrace{(100a_{2}+10a_{1}+a_{0})\cdot 10^0}_{n=0}+\underbrace{(100a_{5}+10a_{4}+a_{3})\cdot 10^3}_{n=1}+\underbrace{(100a_{8}+10a_{7}+a_{6})\cdot 10^6}_{n=2}\mp \dotsb
$$
and wondered if we can do this if ##6\nmid m.##
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
You start with
\begin{align*}
1001\,|\,N&=(100a_{2}+10a_{1}+a_{0})\cdot 10^0+(100a_{5}+10a_{4}+a_{3})\cdot 10^3+(100a_{8}+10a_{7}+a_{6})\cdot 10^6\mp \dotsb\\
&\equiv (100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})\mp \dotsb =M \pmod {1001}
\end{align*}

Oh, now I see that ##1001\,|\,M.##

The other direction is the same, only that we start with ##1001\,|\,M=\ldots \equiv N\pmod {1001} ##

I mistakenly first thought that you would group the polynomial as packages of three with alternating signs:
$$
N=\underbrace{(100a_{2}+10a_{1}+a_{0})\cdot 10^0}_{n=0}+\underbrace{(100a_{5}+10a_{4}+a_{3})\cdot 10^3}_{n=1}+\underbrace{(100a_{8}+10a_{7}+a_{6})\cdot 10^6}_{n=2}\mp \dotsb
$$
and wondered if we can do this if ##6\nmid m.##
What does ## \mp ## symbolize?
 
Math100 said:
What does ## \mp ## symbolize?
That the signs alternate between ##+## and ##-##. If the next one is a minus sign, then it is ##\mp## and if it is a plus sign, then it is ##\pm##.
 
  • Like
Likes   Reactions: Math100

Similar threads

Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K