Prove that ## 7, 11 ##, and ## 13 ## all divide ## N ##

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary

Homework Help Overview

The discussion revolves around proving that the integers 7, 11, and 13 divide a number N, utilizing properties of modular arithmetic and the decimal representation of integers. The participants explore the implications of grouping terms based on the parity of n and the divisibility conditions related to the number 1001.

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Participants examine the proof's validity under different conditions, particularly when m is not divisible by 6. They question how to appropriately group terms in the proof and the implications of such groupings on the divisibility of N.

Discussion Status

There is an ongoing exploration of the proof's structure and the conditions under which it holds. Some participants express confusion regarding the application of certain assumptions and the grouping of terms, while others clarify aspects of the proof and its implications.

Contextual Notes

Participants are considering the constraints of the proof, particularly the conditions under which the divisibility by 1001 is established and the implications of the number m's divisibility by 6 on the proof's validity.

Math100
Messages
823
Reaction score
234
Homework Statement
Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##, be the decimal expansion of a positive integer ## N ##.
Prove that ## 7, 11 ##, and ## 13 ## all divide ## N ## if and only if ## 7, 11 ##, and ## 13 ## divide the integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
[Hint: If ## n ## is even, then ## 10^{3n}\equiv 1, 10^{3n+1}\equiv 10, 10^{3n+2}\equiv 100\pmod {1001} ##; if ## n ## is odd, then ## 10^{3n}\equiv -1, 10^{3n+1}\equiv -10, 10^{3n+2}\equiv -100\pmod {1001} ##.]
Relevant Equations
None.
Proof:

Assume that ## 7, 11 ##, and ## 13 ## all divide ## N ##.
Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##,
be the decimal expansion of a positive integer ## N ##.
Observe that ## 7\cdot 11\cdot 13=1001 ##.
Now we consider two cases.
Case #1: Suppose ## n ## is even.
Then ## 10^{3n}\equiv 1\implies 10^{3n+1}\equiv 10 ##.
Thus ## 10^{3n+2}\equiv 100\pmod {1001} ##.
Case #2: Suppose ## n ## is odd.
Then ## 10^{3n}\equiv -1\implies 10^{3n+1}\equiv -10 ##.
Thus ## 10^{3n+2}\equiv -100\pmod {1001} ##.
Since ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}\equiv [(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb]\pmod {1001} ##, it follows that ## N\equiv 0\pmod {1001} ##.
Thus ## 7, 11 ##, and ## 13 ## divide the integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
Conversely, suppose ## 7, 11 ##, and ## 13 ## divide the integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
Note that ## 7\cdot 11\cdot 13=1001 ##.
Then ## (100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb\equiv 0\pmod {1001} ##.
This means ## a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}\equiv 0\pmod {1001}\implies N\equiv 0\pmod {1001} ##.
Thus ## 7, 11 ##, and ## 13 ## all divide ## N ##.
Therefore, ## 7, 11 ##, and ## 13 ## all divide ## N ## if and only if ## 7, 11 ##, and ## 13 ## divide the integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
 
Physics news on Phys.org
What happens at the end of the line? Your proof works well if ##6\,|\,m## so you can group the numbers in packages of three even ##n## and three odd ##n##, but what happens in the five other cases?
 
fresh_42 said:
What happens at the end of the line? Your proof works well if ##6\,|\,m## so you can group the numbers in packages of three even ##n## and three odd ##n##, but what happens in the five other cases?
I don't understand. If ## 6\mid m ##, then how can I group them in packages of three even...? How can this be applied?
 
## (100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb\pmod {6} ##
 
Math100 said:
I don't understand. If ## 6\mid m ##, then how can I group them in packages of three even...? How can this be applied?
You start with
\begin{align*}
1001\,|\,N&=(100a_{2}+10a_{1}+a_{0})\cdot 10^0+(100a_{5}+10a_{4}+a_{3})\cdot 10^3+(100a_{8}+10a_{7}+a_{6})\cdot 10^6\mp \dotsb\\
&\equiv (100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})\mp \dotsb =M \pmod {1001}
\end{align*}

Oh, now I see that ##1001\,|\,M.##

The other direction is the same, only that we start with ##1001\,|\,M=\ldots \equiv N\pmod {1001} ##

I mistakenly first thought that you would group the polynomial as packages of three with alternating signs:
$$
N=\underbrace{(100a_{2}+10a_{1}+a_{0})\cdot 10^0}_{n=0}+\underbrace{(100a_{5}+10a_{4}+a_{3})\cdot 10^3}_{n=1}+\underbrace{(100a_{8}+10a_{7}+a_{6})\cdot 10^6}_{n=2}\mp \dotsb
$$
and wondered if we can do this if ##6\nmid m.##
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
You start with
\begin{align*}
1001\,|\,N&=(100a_{2}+10a_{1}+a_{0})\cdot 10^0+(100a_{5}+10a_{4}+a_{3})\cdot 10^3+(100a_{8}+10a_{7}+a_{6})\cdot 10^6\mp \dotsb\\
&\equiv (100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})\mp \dotsb =M \pmod {1001}
\end{align*}

Oh, now I see that ##1001\,|\,M.##

The other direction is the same, only that we start with ##1001\,|\,M=\ldots \equiv N\pmod {1001} ##

I mistakenly first thought that you would group the polynomial as packages of three with alternating signs:
$$
N=\underbrace{(100a_{2}+10a_{1}+a_{0})\cdot 10^0}_{n=0}+\underbrace{(100a_{5}+10a_{4}+a_{3})\cdot 10^3}_{n=1}+\underbrace{(100a_{8}+10a_{7}+a_{6})\cdot 10^6}_{n=2}\mp \dotsb
$$
and wondered if we can do this if ##6\nmid m.##
What does ## \mp ## symbolize?
 
Math100 said:
What does ## \mp ## symbolize?
That the signs alternate between ##+## and ##-##. If the next one is a minus sign, then it is ##\mp## and if it is a plus sign, then it is ##\pm##.
 
  • Like
Likes   Reactions: Math100

Similar threads

Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K