Prove that ## 7, 11 ##, and ## 13 ## all divide ## N ##

  • Thread starter Thread starter Math100
  • Start date Start date
AI Thread Summary
The discussion focuses on proving that the integers 7, 11, and 13 divide a number N based on its decimal representation. The proof utilizes modular arithmetic, specifically showing that N is congruent to 0 modulo 1001, since 1001 is the product of 7, 11, and 13. Two cases are considered based on whether the number of digits in N is even or odd, leading to a conclusion that if M (a derived integer from the digits of N) is divisible by 1001, then so is N. Participants clarify the grouping of terms in the proof and the implications of the divisibility conditions. The discussion concludes with an understanding of how to handle cases where the number of digits does not neatly fit the grouping strategy.
Math100
Messages
813
Reaction score
229
Homework Statement
Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##, be the decimal expansion of a positive integer ## N ##.
Prove that ## 7, 11 ##, and ## 13 ## all divide ## N ## if and only if ## 7, 11 ##, and ## 13 ## divide the integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
[Hint: If ## n ## is even, then ## 10^{3n}\equiv 1, 10^{3n+1}\equiv 10, 10^{3n+2}\equiv 100\pmod {1001} ##; if ## n ## is odd, then ## 10^{3n}\equiv -1, 10^{3n+1}\equiv -10, 10^{3n+2}\equiv -100\pmod {1001} ##.]
Relevant Equations
None.
Proof:

Assume that ## 7, 11 ##, and ## 13 ## all divide ## N ##.
Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##,
be the decimal expansion of a positive integer ## N ##.
Observe that ## 7\cdot 11\cdot 13=1001 ##.
Now we consider two cases.
Case #1: Suppose ## n ## is even.
Then ## 10^{3n}\equiv 1\implies 10^{3n+1}\equiv 10 ##.
Thus ## 10^{3n+2}\equiv 100\pmod {1001} ##.
Case #2: Suppose ## n ## is odd.
Then ## 10^{3n}\equiv -1\implies 10^{3n+1}\equiv -10 ##.
Thus ## 10^{3n+2}\equiv -100\pmod {1001} ##.
Since ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}\equiv [(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb]\pmod {1001} ##, it follows that ## N\equiv 0\pmod {1001} ##.
Thus ## 7, 11 ##, and ## 13 ## divide the integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
Conversely, suppose ## 7, 11 ##, and ## 13 ## divide the integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
Note that ## 7\cdot 11\cdot 13=1001 ##.
Then ## (100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb\equiv 0\pmod {1001} ##.
This means ## a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}\equiv 0\pmod {1001}\implies N\equiv 0\pmod {1001} ##.
Thus ## 7, 11 ##, and ## 13 ## all divide ## N ##.
Therefore, ## 7, 11 ##, and ## 13 ## all divide ## N ## if and only if ## 7, 11 ##, and ## 13 ## divide the integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
 
Physics news on Phys.org
What happens at the end of the line? Your proof works well if ##6\,|\,m## so you can group the numbers in packages of three even ##n## and three odd ##n##, but what happens in the five other cases?
 
fresh_42 said:
What happens at the end of the line? Your proof works well if ##6\,|\,m## so you can group the numbers in packages of three even ##n## and three odd ##n##, but what happens in the five other cases?
I don't understand. If ## 6\mid m ##, then how can I group them in packages of three even...? How can this be applied?
 
## (100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb\pmod {6} ##
 
Math100 said:
I don't understand. If ## 6\mid m ##, then how can I group them in packages of three even...? How can this be applied?
You start with
\begin{align*}
1001\,|\,N&=(100a_{2}+10a_{1}+a_{0})\cdot 10^0+(100a_{5}+10a_{4}+a_{3})\cdot 10^3+(100a_{8}+10a_{7}+a_{6})\cdot 10^6\mp \dotsb\\
&\equiv (100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})\mp \dotsb =M \pmod {1001}
\end{align*}

Oh, now I see that ##1001\,|\,M.##

The other direction is the same, only that we start with ##1001\,|\,M=\ldots \equiv N\pmod {1001} ##

I mistakenly first thought that you would group the polynomial as packages of three with alternating signs:
$$
N=\underbrace{(100a_{2}+10a_{1}+a_{0})\cdot 10^0}_{n=0}+\underbrace{(100a_{5}+10a_{4}+a_{3})\cdot 10^3}_{n=1}+\underbrace{(100a_{8}+10a_{7}+a_{6})\cdot 10^6}_{n=2}\mp \dotsb
$$
and wondered if we can do this if ##6\nmid m.##
 
  • Like
Likes Math100
fresh_42 said:
You start with
\begin{align*}
1001\,|\,N&=(100a_{2}+10a_{1}+a_{0})\cdot 10^0+(100a_{5}+10a_{4}+a_{3})\cdot 10^3+(100a_{8}+10a_{7}+a_{6})\cdot 10^6\mp \dotsb\\
&\equiv (100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})\mp \dotsb =M \pmod {1001}
\end{align*}

Oh, now I see that ##1001\,|\,M.##

The other direction is the same, only that we start with ##1001\,|\,M=\ldots \equiv N\pmod {1001} ##

I mistakenly first thought that you would group the polynomial as packages of three with alternating signs:
$$
N=\underbrace{(100a_{2}+10a_{1}+a_{0})\cdot 10^0}_{n=0}+\underbrace{(100a_{5}+10a_{4}+a_{3})\cdot 10^3}_{n=1}+\underbrace{(100a_{8}+10a_{7}+a_{6})\cdot 10^6}_{n=2}\mp \dotsb
$$
and wondered if we can do this if ##6\nmid m.##
What does ## \mp ## symbolize?
 
Math100 said:
What does ## \mp ## symbolize?
That the signs alternate between ##+## and ##-##. If the next one is a minus sign, then it is ##\mp## and if it is a plus sign, then it is ##\pm##.
 
  • Like
Likes Math100
Back
Top