Prove that ## 89\mid (2^{44}-1) ## and ## 97\mid (2^{48}-1) ##

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The discussion confirms that 89 divides \(2^{44}-1\) and 97 divides \(2^{48}-1\) using modular arithmetic. The proof for \(89 \mid (2^{44}-1)\) is established by showing \(2^{11} \equiv 1 \pmod{89}\), leading to \(2^{44}-1 \equiv 0 \pmod{89}\). Similarly, for \(97 \mid (2^{48}-1)\), the proof utilizes \(2^{6} \equiv -33 \pmod{97}\) and subsequent calculations to demonstrate \(2^{48}-1 \equiv 0 \pmod{97}\).

PREREQUISITES
  • Understanding of modular arithmetic
  • Familiarity with congruences
  • Basic knowledge of exponentiation in number theory
  • Ability to perform calculations modulo a prime
NEXT STEPS
  • Study the properties of modular exponentiation
  • Learn about the Chinese Remainder Theorem
  • Explore applications of Fermat's Little Theorem
  • Investigate advanced topics in number theory, such as primitive roots
USEFUL FOR

Mathematicians, students of number theory, and anyone interested in proofs involving modular arithmetic and divisibility.

Math100
Messages
817
Reaction score
230
Homework Statement
Use the theory of congruences to verify that ## 89\mid (2^{44}-1) ## and ## 97\mid (2^{48}-1) ##.
Relevant Equations
None.
Proof:

First, consider ## 89\mid (2^{44}-1) ##.
Observe that
\begin{align*}
2^{44}-1&\equiv (2^{11})^{4}-1\pmod {89}\\
&\equiv [(1)^{4}-1]\pmod {89}\\
&\equiv (1-1)\pmod {89}\\
&\equiv 0\pmod {89}.\\
\end{align*}
Thus ## 89\mid (2^{44}-1) ##.
Next, consider ## 97\mid (2^{48}-1) ##.
Observe that
\begin{align*}
2^{48}-1&\equiv [(2^{6})^{8}-1]\pmod {97}\\
&\equiv [(-33)^{2}]^{4}-1\pmod {97}\\
&\equiv (22^{4}-1)\pmod {97}\\
&\equiv [(22^{2})^{2}-1]\pmod {97}\\
&\equiv [(-1)^{2}-1]\pmod {97}\\
&\equiv (1-1)\pmod {97}\\
&\equiv 0\pmod {97}.\\
\end{align*}
Thus ## 97\mid (2^{48}-1) ##.
Therefore, ## 89\mid (2^{44}-1) ## and ## 97\mid (2^{48}-1) ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Use the theory of congruences to verify that ## 89\mid (2^{44}-1) ## and ## 97\mid (2^{48}-1) ##.
Relevant Equations:: None.

Proof:

First, consider ## 89\mid (2^{44}-1) ##.
Observe that
\begin{align*}
2^{44}-1&\equiv (2^{11})^{4}-1\pmod {89}\\
&\equiv [(1)^{4}-1]\pmod {89}\\
&\equiv (1-1)\pmod {89}\\
&\equiv 0\pmod {89}.\\
\end{align*}
Thus ## 89\mid (2^{44}-1) ##.
Next, consider ## 97\mid (2^{48}-1) ##.
Observe that
\begin{align*}
2^{48}-1&\equiv [(2^{6})^{8}-1]\pmod {97}\\
&\equiv [(-33)^{2}]^{4}-1\pmod {97}\\
&\equiv (22^{4}-1)\pmod {97}\\
&\equiv [(22^{2})^{2}-1]\pmod {97}\\
&\equiv [(-1)^{2}-1]\pmod {97}\\
&\equiv (1-1)\pmod {97}\\
&\equiv 0\pmod {97}.\\
\end{align*}
Thus ## 97\mid (2^{48}-1) ##.
Therefore, ## 89\mid (2^{44}-1) ## and ## 97\mid (2^{48}-1) ##.
Correct.

But ##2^{11}\equiv 1\pmod{89}\, , \,33^2\equiv 22 \pmod{97}\, , \,22^2\equiv -1 \pmod{97}## isn't obvious. Maybe you should have added some steps there.
 
First, consider ## 89\mid (2^{44}-1) ##.
Then ## 2^{44}-1\equiv (2^{11})^{4}-1\pmod {89} ##.
Note that ## 2^{11}\equiv 1\pmod {89} ##.
Thus ## 2^{44}-1\equiv [(1)^{4}-1]\pmod {89}\equiv (1-1)\pmod {89}\equiv 0\pmod {89} ##.
Therefore, ## 89\mid (2^{44}-1) ##.
Next, consider ## 97\mid (2^{48}-1) ##.
Then ## 2^{48}-1\equiv [(2^{6})^{8}-1]\pmod {97} ##.
Note that ## 2^{6}\equiv -33\pmod {97}\implies (2^{6})^{8}\equiv (-33)^{8}\pmod {97} ##, ## 33^{2}\equiv 22\pmod {97} ## and ## 22^{2}\equiv -1\pmod {97} ##.
Thus
\begin{align*}
2^{48}-1&\equiv [(-33)^{2}]^{4}-1\pmod {97}\\
&\equiv (22^{4}-1)\pmod {97}\\
&\equiv [(22^{2})^{2}-1]\pmod {97}\\
&\equiv [(-1)^{2}-1]\pmod {97}\\
&\equiv (1-1)\pmod {97}\\
&\equiv 0\pmod {97}.
\end{align*}
Therefore, ## 97\mid (2^{48}-1) ##.
 
I thought of something like
\begin{align*}
2^{11}&=2048=23\cdot 89 +1\\
33^2&=11^2\cdot 9=121\cdot 9=1089=11\cdot 97 +22\\
22^2&=11^2\cdot 4=121 \cdot 4= 484=4\cdot 97 +96
\end{align*}
In the end, it is only a matter of taste. I just found it uncomfortable that I had to use a calculator to verify your proof. Using the calculator would have allowed me to verify the statement on my own anyway, so where was the advantage to read the proof?
 
Last edited:
  • Like
Likes   Reactions: Math100
Another way to approach it is a trick that should always come to mind when even powers occur.

Set ##a=2^{11}=2048## and ##b=2^{6}=64.## Then
\begin{align*}
2^{44}-1&=(a^4-1)=(a^2-1)(a^2+1)\\&=(a-1)(a+1)(a^2+1)\\
&=\underbrace{2,047}_{89\,\mid 23\cdot 89}\cdot \underbrace{2,049}_{89\,\nmid } \cdot \underbrace{4,194,305}_{89\,\nmid }\\
&\\
2^{48}-1&=(b^8-1)=(b^4-1)(b^4+1)=(b^2-1)(b^2+1)(b^4+1)\\&=(b-1)(b+1)(b^2+1)(b^4+1)\\
&=\underbrace{63}_{97\,\nmid}\cdot \underbrace{65}_{97\,\nmid} \cdot \underbrace{4,097}_{97\,\nmid} \cdot \underbrace{16,777,217}_{97\,\mid 172,961\cdot 97}
\end{align*}
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
I thought of something like
\begin{align*}
2^{11}&=2048=23\cdot 89 +1\\
33^2&=11^2\cdot 9=121\cdot 9=1089=11\cdot 97 +22\\
22^2&=11^2\cdot 4=121 \cdot 4= 484=4\cdot 97 +96
\end{align*}
In the end, it is only a matter of taste. I just found it uncomfortable that I had to use a calculator to verify your proof. Using the calculator would have allowed me to verify the statement on my own anyway, so where was the advantage to read the proof?
Another way to show ## \,33^2\equiv 22 \pmod{97}## .

##33^2=11\cdot 3\cdot 33=11\cdot 99 ##

Therefore, ## \,33^2\equiv 11\cdot 2 \pmod{97}##
 
  • Like
Likes   Reactions: fresh_42 and Math100

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K