Prove that ## a^{({2}^{n})}\equiv 1\pmod {2^{n+2}} ## for any ##n##?

  • Thread starter Thread starter Math100
  • Start date Start date
AI Thread Summary
The discussion centers on proving that for any odd integer a and for any n≥1, the equation a^{(2^n)} ≡ 1 (mod 2^{n+2}) holds true. The proof is conducted via mathematical induction, starting with the base case of n=1, where the statement is verified. Assuming the statement is true for n=k, the proof demonstrates it holds for n=k+1 by showing that a^{(2^{k+1})} simplifies to a form congruent to 1 modulo 2^{k+3}. Participants also address potential confusion in notation, emphasizing the importance of clarity in mathematical expressions. The proof concludes that the original statement is valid for all n≥1.
Math100
Messages
813
Reaction score
229
Homework Statement
Establish that if ## a ## is an odd integer, then for any ## n\geq 1 ##, ## a^{({2}^{n})}\equiv 1\pmod {2^{n+2}} ##.
[Hint: Proceed by induction on ## n ##.]
Relevant Equations
None.
Proof:

The proof is by induction.
(1) When ## n=1 ##, the statement is ## a^{({2}^{1})} \equiv 1 \pmod {8} ##, which is true because ## a ## is an odd integer.
(2) Now assume the statement is true for some integer ## n=k\geq 1 ##, that is assume ## a^{({2}^{k})}\equiv 1\pmod {2^{k+2}} ##.
Then ## a^{({2}^{k})}\equiv 2^{k+2}\cdot b+1 ## for some ## b\in\mathbb{Z} ##.
Next, we will show that the statement for ## n=k+1 ## is true.
Observe that ## a^{({2}^{k+1})}=(a^{({2}^{k})})^{2}=(2^{k+2}\cdot b+1)^{2}=b^{2}\cdot 2^{2k+4}+b\cdot 2^{k+3}+1 ##.
Note that ## 2^{2k+4}\equiv 0\pmod {2^{k+3}} ##.
This establishes ## a^{(2^{k+1})}\equiv 1\pmod {2^{k+3}} ##, which implies that the statement is true for ## n=k+1 ##.
The proof by induction is complete.
Therefore, ## a^{({2}^{n})}\equiv 1\pmod {2^{n+2}} ## if ## a ## is an odd integer for any ## n\geq 1 ##.
 
Last edited by a moderator:
  • Like
Likes Delta2
Physics news on Phys.org
Math100 said:
Homework Statement:: Establish that if ## a ## is an odd integer, then for any ## n\geq 1 ##, ## a^{2}^{n}\equiv 1\pmod {2^{n+2}} ##.
[Hint: Proceed by induction on ## n ##.]
Relevant Equations:: None.

Proof:

The proof is by induction.
(1) When ## n=1 ##, the statement is ## a^{2}\equiv 1\pmod {8} ##, which is true because ## a ## is an odd integer.
(2) Now assume the statement is true for some integer ## n=k\geq 1 ##, that is assume ## a^{2}^{k}\equiv 1\pmod {2^{k+2}} ##.
Then ## a^{2}^{k}\equiv 2^{k+2}\cdot b+1 ## for some ## b\in\mathbb{Z} ##.
Next, we will show that the statement for ## n=k+1 ## is true.
Observe that ## a^{2}^{k+1}=(a^{2}^{k})^{2}=(2^{k+2}\cdot b+1)^{2}=b^{2}\cdot 2^{2k+4}+b\cdot 2^{k+3}+1 ##.
Note that ## 2^{2k+4}\equiv 0\pmod {2^{k+3}} ##.
This establishes ## a^{2k+1}\equiv 1\pmod {2^{k+3}} ##, which implies that the statement is true for ## n=k+1 ##.
The proof by induction is complete.
Therefore, ## a^{2n}\equiv 1\pmod {2^{n+2}} ## if ## a ## is an odd integer for any ## n\geq 1 ##.
So what's with all those yellow & red error messages?
Well, MathJax wants to know what you mean by the following: ## a^{2}^{n} ##.

Do you mean ##\displaystyle a^{(2^n)}~## or do you mean ##\displaystyle {\left(a^2\right)}^{n}~##
 
SammyS said:
So what's with all those yellow & red error messages?
Well, MathJax wants to know what you mean by the following: ## a^{2}^{n} ##.

Do you mean ##\displaystyle a^{(2^n)}~## or do you mean ##\displaystyle {\left(a^2\right)}^{n}~##
Corrected. The smallest example to decide it was ##(a,n)=(3,3).##
 
  • Like
Likes SammyS
Math100 said:
Homework Statement:: Establish that if ## a ## is an odd integer, then for any ## n\geq 1 ##, ## a^{({2}^{n})}\equiv 1\pmod {2^{n+2}} ##.
[Hint: Proceed by induction on ## n ##.]
Relevant Equations:: None.

Proof:

The proof is by induction.
(1) When ## n=1 ##, the statement is ## a^{({2}^{1})} \equiv 1 \pmod {8} ##, which is true because ## a ## is an odd integer.
Reference? Alternatively, a short line ##(2n+1)^2-1=4\cdot n \cdot (n+1)## would be of help here.
Math100 said:
(2) Now assume the statement is true for some integer ## n=k\geq 1 ##, that is assume ## a^{({2}^{k})}\equiv 1\pmod {2^{k+2}} ##.
Then ## a^{({2}^{k})}\equiv 2^{k+2}\cdot b+1 ## for some ## b\in\mathbb{Z} ##.
Damn it. This tiny word "then" led me to comment ...
Sure? Let's see:
\begin{align*}
a^{({2}^{k})}&=(2m+1)^{(2^k)}=1+\sum_{j=1}^{2^k}\binom{2^k}{j}(2m)^j=1+\sum_{j=1}^{2^k}\dfrac{2^jm^j(2^k)\cdot (2^k-1)\cdots (2^k-j+1)}{j!}\\
&= 1+ \dfrac{2m\cdot 2^k}{1}+\dfrac{2^2m^22^k(2^k-1)}{2}+ \dfrac{2^3m^32^k(2^k-1)(2^k-2)}{2\cdot 3}+\ldots
\end{align*}

I can only see ## a^{({2}^{k})}\equiv 2^{k+1}\cdot b+1 ## for some ## b\in\mathbb{Z} ## so whatever is correct, it deserves a proof.

... until I finally noticed that "then" means "i.e." or "thus" or "that means". It was a transcription of the induction hypothesis and no conclusion! My fault, since whenever I see a "then" I automatically ask "why?". Remember that a proof is a text that is intended to convince people. Therefore, words matter.

At least, I now understand what has to be shown.

Math100 said:
Next, we will show that the statement for ## n=k+1 ## is true.
Observe that ## a^{({2}^{k+1})}=(a^{({2}^{k})})^{2}=(2^{k+2}\cdot b+1)^{2}=b^{2}\cdot 2^{2k+4}+b\cdot 2^{k+3}+1 ##.
Note that ## 2^{2k+4}\equiv 0\pmod {2^{k+3}} ##.
This establishes ## a^{(2^{k+1})}\equiv 1\pmod {2^{k+3}} ##, which implies that the statement is true for ## n=k+1 ##.
The proof by induction is complete.
Therefore, ## a^{({2}^{n})}\equiv 1\pmod {2^{n+2}} ## if ## a ## is an odd integer for any ## n\geq 1 ##.
The rest looks good. It is also an interesting example that a proof by induction can be easier than a direct computation. (So my calculation has served at least this.)
 
  • Like
Likes Math100
What I meant to express/write using Latex commands is ## a^{2^n} ##.
 
Math100 said:
What I meant to express/write using Latex commands is ## a^{2^n} ##.
Whenever there is more than one sign in the exponent, we have to use parathesis: a^{2^n}, and it is even better to use normal parenthesis to avoid any confusion: a^{(2^n)}.
 
  • Like
Likes SammyS and Math100
Thank you, now I know.
 
Back
Top