Prove that ## a^{({2}^{n})}\equiv 1\pmod {2^{n+2}} ## for any ##n##?

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary

Homework Help Overview

The discussion revolves around proving the congruence relation ## a^{(2^n)} \equiv 1 \pmod{2^{n+2}} ## for any odd integer ## a ## and integer ## n \geq 1 ##. The problem is situated within the context of number theory and modular arithmetic.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants explore a proof by induction, starting with the base case for ## n=1 ## and assuming the statement holds for ## n=k ## to prove it for ## n=k+1 ##. There are also discussions about the clarity of notation in the expression of the exponent, particularly regarding the use of parentheses.

Discussion Status

Several participants have engaged in the proof process, with some expressing confusion over the notation used for the exponent. Clarifications have been made regarding the intended meaning of the expressions, and there is a recognition of the importance of precise language in mathematical proofs.

Contextual Notes

Some participants question the clarity of the notation ## a^{2^n} ## versus ## (a^2)^n ##, indicating a need for careful expression in mathematical writing to avoid misinterpretation.

Math100
Messages
823
Reaction score
234
Homework Statement
Establish that if ## a ## is an odd integer, then for any ## n\geq 1 ##, ## a^{({2}^{n})}\equiv 1\pmod {2^{n+2}} ##.
[Hint: Proceed by induction on ## n ##.]
Relevant Equations
None.
Proof:

The proof is by induction.
(1) When ## n=1 ##, the statement is ## a^{({2}^{1})} \equiv 1 \pmod {8} ##, which is true because ## a ## is an odd integer.
(2) Now assume the statement is true for some integer ## n=k\geq 1 ##, that is assume ## a^{({2}^{k})}\equiv 1\pmod {2^{k+2}} ##.
Then ## a^{({2}^{k})}\equiv 2^{k+2}\cdot b+1 ## for some ## b\in\mathbb{Z} ##.
Next, we will show that the statement for ## n=k+1 ## is true.
Observe that ## a^{({2}^{k+1})}=(a^{({2}^{k})})^{2}=(2^{k+2}\cdot b+1)^{2}=b^{2}\cdot 2^{2k+4}+b\cdot 2^{k+3}+1 ##.
Note that ## 2^{2k+4}\equiv 0\pmod {2^{k+3}} ##.
This establishes ## a^{(2^{k+1})}\equiv 1\pmod {2^{k+3}} ##, which implies that the statement is true for ## n=k+1 ##.
The proof by induction is complete.
Therefore, ## a^{({2}^{n})}\equiv 1\pmod {2^{n+2}} ## if ## a ## is an odd integer for any ## n\geq 1 ##.
 
Last edited by a moderator:
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
Math100 said:
Homework Statement:: Establish that if ## a ## is an odd integer, then for any ## n\geq 1 ##, ## a^{2}^{n}\equiv 1\pmod {2^{n+2}} ##.
[Hint: Proceed by induction on ## n ##.]
Relevant Equations:: None.

Proof:

The proof is by induction.
(1) When ## n=1 ##, the statement is ## a^{2}\equiv 1\pmod {8} ##, which is true because ## a ## is an odd integer.
(2) Now assume the statement is true for some integer ## n=k\geq 1 ##, that is assume ## a^{2}^{k}\equiv 1\pmod {2^{k+2}} ##.
Then ## a^{2}^{k}\equiv 2^{k+2}\cdot b+1 ## for some ## b\in\mathbb{Z} ##.
Next, we will show that the statement for ## n=k+1 ## is true.
Observe that ## a^{2}^{k+1}=(a^{2}^{k})^{2}=(2^{k+2}\cdot b+1)^{2}=b^{2}\cdot 2^{2k+4}+b\cdot 2^{k+3}+1 ##.
Note that ## 2^{2k+4}\equiv 0\pmod {2^{k+3}} ##.
This establishes ## a^{2k+1}\equiv 1\pmod {2^{k+3}} ##, which implies that the statement is true for ## n=k+1 ##.
The proof by induction is complete.
Therefore, ## a^{2n}\equiv 1\pmod {2^{n+2}} ## if ## a ## is an odd integer for any ## n\geq 1 ##.
So what's with all those yellow & red error messages?
Well, MathJax wants to know what you mean by the following: ## a^{2}^{n} ##.

Do you mean ##\displaystyle a^{(2^n)}~## or do you mean ##\displaystyle {\left(a^2\right)}^{n}~##
 
SammyS said:
So what's with all those yellow & red error messages?
Well, MathJax wants to know what you mean by the following: ## a^{2}^{n} ##.

Do you mean ##\displaystyle a^{(2^n)}~## or do you mean ##\displaystyle {\left(a^2\right)}^{n}~##
Corrected. The smallest example to decide it was ##(a,n)=(3,3).##
 
  • Like
Likes   Reactions: SammyS
Math100 said:
Homework Statement:: Establish that if ## a ## is an odd integer, then for any ## n\geq 1 ##, ## a^{({2}^{n})}\equiv 1\pmod {2^{n+2}} ##.
[Hint: Proceed by induction on ## n ##.]
Relevant Equations:: None.

Proof:

The proof is by induction.
(1) When ## n=1 ##, the statement is ## a^{({2}^{1})} \equiv 1 \pmod {8} ##, which is true because ## a ## is an odd integer.
Reference? Alternatively, a short line ##(2n+1)^2-1=4\cdot n \cdot (n+1)## would be of help here.
Math100 said:
(2) Now assume the statement is true for some integer ## n=k\geq 1 ##, that is assume ## a^{({2}^{k})}\equiv 1\pmod {2^{k+2}} ##.
Then ## a^{({2}^{k})}\equiv 2^{k+2}\cdot b+1 ## for some ## b\in\mathbb{Z} ##.
Damn it. This tiny word "then" led me to comment ...
Sure? Let's see:
\begin{align*}
a^{({2}^{k})}&=(2m+1)^{(2^k)}=1+\sum_{j=1}^{2^k}\binom{2^k}{j}(2m)^j=1+\sum_{j=1}^{2^k}\dfrac{2^jm^j(2^k)\cdot (2^k-1)\cdots (2^k-j+1)}{j!}\\
&= 1+ \dfrac{2m\cdot 2^k}{1}+\dfrac{2^2m^22^k(2^k-1)}{2}+ \dfrac{2^3m^32^k(2^k-1)(2^k-2)}{2\cdot 3}+\ldots
\end{align*}

I can only see ## a^{({2}^{k})}\equiv 2^{k+1}\cdot b+1 ## for some ## b\in\mathbb{Z} ## so whatever is correct, it deserves a proof.

... until I finally noticed that "then" means "i.e." or "thus" or "that means". It was a transcription of the induction hypothesis and no conclusion! My fault, since whenever I see a "then" I automatically ask "why?". Remember that a proof is a text that is intended to convince people. Therefore, words matter.

At least, I now understand what has to be shown.

Math100 said:
Next, we will show that the statement for ## n=k+1 ## is true.
Observe that ## a^{({2}^{k+1})}=(a^{({2}^{k})})^{2}=(2^{k+2}\cdot b+1)^{2}=b^{2}\cdot 2^{2k+4}+b\cdot 2^{k+3}+1 ##.
Note that ## 2^{2k+4}\equiv 0\pmod {2^{k+3}} ##.
This establishes ## a^{(2^{k+1})}\equiv 1\pmod {2^{k+3}} ##, which implies that the statement is true for ## n=k+1 ##.
The proof by induction is complete.
Therefore, ## a^{({2}^{n})}\equiv 1\pmod {2^{n+2}} ## if ## a ## is an odd integer for any ## n\geq 1 ##.
The rest looks good. It is also an interesting example that a proof by induction can be easier than a direct computation. (So my calculation has served at least this.)
 
  • Like
Likes   Reactions: Math100
What I meant to express/write using Latex commands is ## a^{2^n} ##.
 
Math100 said:
What I meant to express/write using Latex commands is ## a^{2^n} ##.
Whenever there is more than one sign in the exponent, we have to use parathesis: a^{2^n}, and it is even better to use normal parenthesis to avoid any confusion: a^{(2^n)}.
 
  • Like
Likes   Reactions: SammyS and Math100
Thank you, now I know.
 

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
Replies
3
Views
3K
Replies
4
Views
2K
Replies
2
Views
2K
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K