Prove that ## a^{({2}^{n})}\equiv 1\pmod {2^{n+2}} ## for any ##n##?

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on proving that for any odd integer ## a ##, the equation ## a^{(2^{n})} \equiv 1 \pmod {2^{n+2}} ## holds for all integers ## n \geq 1 ##. The proof utilizes mathematical induction, starting with the base case of ## n=1 ##, where the statement is verified as true. The inductive step assumes the statement is valid for ## n=k ## and demonstrates its validity for ## n=k+1 ##, thereby completing the proof. The discussion also highlights the importance of clarity in mathematical notation, particularly in the use of parentheses in exponents.

PREREQUISITES
  • Understanding of mathematical induction
  • Familiarity with modular arithmetic
  • Knowledge of odd integers and their properties
  • Proficiency in LaTeX for mathematical notation
NEXT STEPS
  • Study advanced topics in mathematical induction techniques
  • Explore modular arithmetic applications in number theory
  • Learn about the properties of odd and even integers
  • Practice writing mathematical proofs using LaTeX
USEFUL FOR

Mathematicians, students studying number theory, educators teaching modular arithmetic, and anyone interested in mathematical proofs and induction methods.

Math100
Messages
817
Reaction score
230
Homework Statement
Establish that if ## a ## is an odd integer, then for any ## n\geq 1 ##, ## a^{({2}^{n})}\equiv 1\pmod {2^{n+2}} ##.
[Hint: Proceed by induction on ## n ##.]
Relevant Equations
None.
Proof:

The proof is by induction.
(1) When ## n=1 ##, the statement is ## a^{({2}^{1})} \equiv 1 \pmod {8} ##, which is true because ## a ## is an odd integer.
(2) Now assume the statement is true for some integer ## n=k\geq 1 ##, that is assume ## a^{({2}^{k})}\equiv 1\pmod {2^{k+2}} ##.
Then ## a^{({2}^{k})}\equiv 2^{k+2}\cdot b+1 ## for some ## b\in\mathbb{Z} ##.
Next, we will show that the statement for ## n=k+1 ## is true.
Observe that ## a^{({2}^{k+1})}=(a^{({2}^{k})})^{2}=(2^{k+2}\cdot b+1)^{2}=b^{2}\cdot 2^{2k+4}+b\cdot 2^{k+3}+1 ##.
Note that ## 2^{2k+4}\equiv 0\pmod {2^{k+3}} ##.
This establishes ## a^{(2^{k+1})}\equiv 1\pmod {2^{k+3}} ##, which implies that the statement is true for ## n=k+1 ##.
The proof by induction is complete.
Therefore, ## a^{({2}^{n})}\equiv 1\pmod {2^{n+2}} ## if ## a ## is an odd integer for any ## n\geq 1 ##.
 
Last edited by a moderator:
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
Math100 said:
Homework Statement:: Establish that if ## a ## is an odd integer, then for any ## n\geq 1 ##, ## a^{2}^{n}\equiv 1\pmod {2^{n+2}} ##.
[Hint: Proceed by induction on ## n ##.]
Relevant Equations:: None.

Proof:

The proof is by induction.
(1) When ## n=1 ##, the statement is ## a^{2}\equiv 1\pmod {8} ##, which is true because ## a ## is an odd integer.
(2) Now assume the statement is true for some integer ## n=k\geq 1 ##, that is assume ## a^{2}^{k}\equiv 1\pmod {2^{k+2}} ##.
Then ## a^{2}^{k}\equiv 2^{k+2}\cdot b+1 ## for some ## b\in\mathbb{Z} ##.
Next, we will show that the statement for ## n=k+1 ## is true.
Observe that ## a^{2}^{k+1}=(a^{2}^{k})^{2}=(2^{k+2}\cdot b+1)^{2}=b^{2}\cdot 2^{2k+4}+b\cdot 2^{k+3}+1 ##.
Note that ## 2^{2k+4}\equiv 0\pmod {2^{k+3}} ##.
This establishes ## a^{2k+1}\equiv 1\pmod {2^{k+3}} ##, which implies that the statement is true for ## n=k+1 ##.
The proof by induction is complete.
Therefore, ## a^{2n}\equiv 1\pmod {2^{n+2}} ## if ## a ## is an odd integer for any ## n\geq 1 ##.
So what's with all those yellow & red error messages?
Well, MathJax wants to know what you mean by the following: ## a^{2}^{n} ##.

Do you mean ##\displaystyle a^{(2^n)}~## or do you mean ##\displaystyle {\left(a^2\right)}^{n}~##
 
SammyS said:
So what's with all those yellow & red error messages?
Well, MathJax wants to know what you mean by the following: ## a^{2}^{n} ##.

Do you mean ##\displaystyle a^{(2^n)}~## or do you mean ##\displaystyle {\left(a^2\right)}^{n}~##
Corrected. The smallest example to decide it was ##(a,n)=(3,3).##
 
  • Like
Likes   Reactions: SammyS
Math100 said:
Homework Statement:: Establish that if ## a ## is an odd integer, then for any ## n\geq 1 ##, ## a^{({2}^{n})}\equiv 1\pmod {2^{n+2}} ##.
[Hint: Proceed by induction on ## n ##.]
Relevant Equations:: None.

Proof:

The proof is by induction.
(1) When ## n=1 ##, the statement is ## a^{({2}^{1})} \equiv 1 \pmod {8} ##, which is true because ## a ## is an odd integer.
Reference? Alternatively, a short line ##(2n+1)^2-1=4\cdot n \cdot (n+1)## would be of help here.
Math100 said:
(2) Now assume the statement is true for some integer ## n=k\geq 1 ##, that is assume ## a^{({2}^{k})}\equiv 1\pmod {2^{k+2}} ##.
Then ## a^{({2}^{k})}\equiv 2^{k+2}\cdot b+1 ## for some ## b\in\mathbb{Z} ##.
Damn it. This tiny word "then" led me to comment ...
Sure? Let's see:
\begin{align*}
a^{({2}^{k})}&=(2m+1)^{(2^k)}=1+\sum_{j=1}^{2^k}\binom{2^k}{j}(2m)^j=1+\sum_{j=1}^{2^k}\dfrac{2^jm^j(2^k)\cdot (2^k-1)\cdots (2^k-j+1)}{j!}\\
&= 1+ \dfrac{2m\cdot 2^k}{1}+\dfrac{2^2m^22^k(2^k-1)}{2}+ \dfrac{2^3m^32^k(2^k-1)(2^k-2)}{2\cdot 3}+\ldots
\end{align*}

I can only see ## a^{({2}^{k})}\equiv 2^{k+1}\cdot b+1 ## for some ## b\in\mathbb{Z} ## so whatever is correct, it deserves a proof.

... until I finally noticed that "then" means "i.e." or "thus" or "that means". It was a transcription of the induction hypothesis and no conclusion! My fault, since whenever I see a "then" I automatically ask "why?". Remember that a proof is a text that is intended to convince people. Therefore, words matter.

At least, I now understand what has to be shown.

Math100 said:
Next, we will show that the statement for ## n=k+1 ## is true.
Observe that ## a^{({2}^{k+1})}=(a^{({2}^{k})})^{2}=(2^{k+2}\cdot b+1)^{2}=b^{2}\cdot 2^{2k+4}+b\cdot 2^{k+3}+1 ##.
Note that ## 2^{2k+4}\equiv 0\pmod {2^{k+3}} ##.
This establishes ## a^{(2^{k+1})}\equiv 1\pmod {2^{k+3}} ##, which implies that the statement is true for ## n=k+1 ##.
The proof by induction is complete.
Therefore, ## a^{({2}^{n})}\equiv 1\pmod {2^{n+2}} ## if ## a ## is an odd integer for any ## n\geq 1 ##.
The rest looks good. It is also an interesting example that a proof by induction can be easier than a direct computation. (So my calculation has served at least this.)
 
  • Like
Likes   Reactions: Math100
What I meant to express/write using Latex commands is ## a^{2^n} ##.
 
Math100 said:
What I meant to express/write using Latex commands is ## a^{2^n} ##.
Whenever there is more than one sign in the exponent, we have to use parathesis: a^{2^n}, and it is even better to use normal parenthesis to avoid any confusion: a^{(2^n)}.
 
  • Like
Likes   Reactions: SammyS and Math100
Thank you, now I know.
 

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
Replies
3
Views
3K
Replies
4
Views
2K
Replies
2
Views
2K
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K