Prove that ## a^{3}+1 ## is divisible by ## 7 ##.

  • Thread starter Thread starter Math100
  • Start date Start date
Math100
Messages
817
Reaction score
229
Homework Statement
If ## 7\nmid a ##, prove that either ## a^{3}+1 ## or ## a^{3}-1 ## is divisible by ## 7 ##.
Relevant Equations
None.
Proof:

Suppose ## 7\nmid a ##.
Applying the Fermat's theorem produces:
## a^{7-1}\equiv 1\pmod {7}\implies a^{6}\equiv 1\pmod {7} ##.
This means ## 7\mid (a^{6}-1) ##.
Observe that ## a^{6}-1=(a^{3}-1)(a^{3}+1) ##.
Thus ## 7\nmid (a^{3}-1)\implies 7\mid (a^{3}+1) ## and ## 7\nmid (a^{3}+1)\implies 7\mid (a^{3}-1) ##.
Therefore, if ## 7\nmid a ##, then either ## a^{3}+1 ## or ## a^{3}-1 ## is divisible by ## 7 ##.
 
Physics news on Phys.org
Correct.

You basically use that ##7## is a prime number. That means, ##7\neq \pm1## and if ##7\,|\,a\cdot b \Longrightarrow 7\,|\,a \text{ or } 7\,|\,b.## This is the correct definition of a prime number.
 

Similar threads

Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
1
Views
3K