Prove that ## a^{4}\equiv 0 ## or ## 1\pmod {5} ##?

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The proof establishes that for any integer ## a ##, the expression ## a^{4} \equiv 0 \text{ or } 1 \pmod{5} ## holds true. By evaluating the possible residues of ## a \pmod{5} ##, it is shown that ## a^{4} ## results in either 0 or 1 when reduced modulo 5. Additionally, it is confirmed that ## a^{4} \equiv 1 \pmod{5} ## whenever ## 5 \nmid a ##. This conclusion is significant in modular arithmetic and number theory.

PREREQUISITES
  • Understanding of modular arithmetic
  • Familiarity with integer properties
  • Knowledge of prime numbers and their characteristics
  • Basic proof techniques in mathematics
NEXT STEPS
  • Explore Fermat's Little Theorem and its applications
  • Study the properties of modular exponentiation
  • Investigate the implications of the Chinese Remainder Theorem
  • Learn about the structure of multiplicative groups in modular arithmetic
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in modular arithmetic and its applications in proofs and theorems.

Math100
Messages
817
Reaction score
230
Homework Statement
Prove the assertion below:
For any integer ## a ##, ## a^{4}\equiv 0 ## or ## 1\pmod {5} ##.
Relevant Equations
None.
Proof:

Let ## a ## be any integer.
Then ## a\equiv 0, 1, 2, 3 ## or ## 4\pmod {5} ##.
Note that ## a\equiv b\pmod {n}\implies a^{4}\equiv b^{4}\pmod {n} ##.
This means ## a^{4}\equiv 0, 1, 16, 81 ## or ## 256\pmod {5}\implies a^{4}\equiv 0, 1, 1, 1 ## or ## 1\pmod {5} ##.
Thus ## a^{4}\equiv 0 ## or ## 1\pmod {5} ##.
Therefore, ## a^{4}\equiv 0 ## or ## 1\pmod {5} ## for any integer ## a ##.
 
  • Like
Likes   Reactions: Delta2 and fresh_42
Physics news on Phys.org
Math100 said:
Homework Statement:: Prove the assertion below:
For any integer ## a ##, ## a^{4}\equiv 0 ## or ## 1\pmod {5} ##.
Relevant Equations:: None.

Proof:

Let ## a ## be any integer.
Then ## a\equiv 0, 1, 2, 3 ## or ## 4\pmod {5} ##.
Note that ## a\equiv b\pmod {n}\implies a^{4}\equiv b^{4}\pmod {n} ##.
This means ## a^{4}\equiv 0, 1, 16, 81 ## or ## 256\pmod {5}\implies a^{4}\equiv 0, 1, 1, 1 ## or ## 1\pmod {5} ##.
Thus ## a^{4}\equiv 0 ## or ## 1\pmod {5} ##.
Therefore, ## a^{4}\equiv 0 ## or ## 1\pmod {5} ## for any integer ## a ##.
You have shown even more: ##a^4\equiv 1 \pmod 5## whenever ##5\nmid a.##
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
You have shown even more: ##a^4\equiv 1 \pmod 5## whenever ##5\nmid a.##
… which directly brings us to the following question that the OP might want to attempt to answer:

If p is prime and ##p \nmid n##, does ##n^{p-1} \equiv 1 \pmod p##?
 
Last edited:
  • Like
Likes   Reactions: SammyS

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K