Prove that ## b\equiv c\pmod {n} ##, where the integer is....

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Integer
AI Thread Summary
The proof establishes that if ## a\equiv b\pmod {n_{1}} ## and ## a\equiv c\pmod {n_{2}} ##, then it follows that ## b\equiv c\pmod {n} ##, where ## n=gcd(n_{1}, n_{2}) ##. By expressing the differences as multiples of their respective moduli, it shows that the difference between b and c is also a multiple of n. The proof utilizes the properties of gcd and equivalence relations to demonstrate this transitive property. An alternative approach emphasizes the equivalence relation's reflexivity, symmetry, and transitivity to arrive at the same conclusion. Thus, the relationship holds true under the specified conditions.
Math100
Messages
813
Reaction score
229
Homework Statement
If ## a\equiv b\pmod {n_{1}} ## and ## a\equiv c\pmod {n_{2}} ##, prove that ## b\equiv c\pmod {n} ##, where the integer ## n=gcd(n_{1}. n_{2}) ##.
Relevant Equations
None.
Proof:

Suppose ## a\equiv b\pmod {n_{1}} ## and ## a\equiv c\pmod {n_{2}} ## where the integer ## n=gcd(n_{1}, n_{2}) ##.
Then ## a-b=n_{1}k_{1} ## and ## a-c=n_{2}k_{2} ## for some ## k_{1}, k_{2}\in\mathbb{Z} ##.
This means ## b-c=n_{2}k_{2}-n_{1}k_{1} ##.
Since ## n=gcd(n_{1}, n_{2}) ##, it follows that ## n_{1}=qn ## and ## n_{2}=tn ## with ## gcd(q, t)=1 ##.
Thus ## b-c=tnk_{2}-qnk_{1}=n(tk_{2}-qk_{1})\implies n\mid (b-c)\implies b\equiv c\pmod {n} ##.
Therefore, ## b\equiv c\pmod {n} ## if ## a\equiv b\pmod {n_{1}} ## and ## a\equiv c\pmod {n_{2}} ##, where the integer ## n=gcd(n_{1}, n_{2}) ##.
 
Physics news on Phys.org
That's fine.

Maybe a bit more intuitive is the following order of arguments (same as yours):

##n\,|\,n_1 \,|\,(a-b)## so ##a\equiv b\pmod n## and for symmetry reasons ##a\equiv c\pmod n.## Now ##\equiv## is an equivalence relation (reflexive, symmetric, transitive), hence ##b\equiv c \pmod n## which is the transitivity property.
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Essentially I just have this problem that I'm stuck on, on a sheet about complex numbers: Show that, for ##|r|<1,## $$1+r\cos(x)+r^2\cos(2x)+r^3\cos(3x)...=\frac{1-r\cos(x)}{1-2r\cos(x)+r^2}$$ My first thought was to express it as a geometric series, where the real part of the sum of the series would be the series you see above: $$1+re^{ix}+r^2e^{2ix}+r^3e^{3ix}...$$ The sum of this series is just: $$\frac{(re^{ix})^n-1}{re^{ix} - 1}$$ I'm having some trouble trying to figure out what to...
Back
Top