Prove that ## b\equiv c\pmod {n} ##, where the integer is....

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Integer
AI Thread Summary
The proof establishes that if ## a\equiv b\pmod {n_{1}} ## and ## a\equiv c\pmod {n_{2}} ##, then it follows that ## b\equiv c\pmod {n} ##, where ## n=gcd(n_{1}, n_{2}) ##. By expressing the differences as multiples of their respective moduli, it shows that the difference between b and c is also a multiple of n. The proof utilizes the properties of gcd and equivalence relations to demonstrate this transitive property. An alternative approach emphasizes the equivalence relation's reflexivity, symmetry, and transitivity to arrive at the same conclusion. Thus, the relationship holds true under the specified conditions.
Math100
Messages
816
Reaction score
229
Homework Statement
If ## a\equiv b\pmod {n_{1}} ## and ## a\equiv c\pmod {n_{2}} ##, prove that ## b\equiv c\pmod {n} ##, where the integer ## n=gcd(n_{1}. n_{2}) ##.
Relevant Equations
None.
Proof:

Suppose ## a\equiv b\pmod {n_{1}} ## and ## a\equiv c\pmod {n_{2}} ## where the integer ## n=gcd(n_{1}, n_{2}) ##.
Then ## a-b=n_{1}k_{1} ## and ## a-c=n_{2}k_{2} ## for some ## k_{1}, k_{2}\in\mathbb{Z} ##.
This means ## b-c=n_{2}k_{2}-n_{1}k_{1} ##.
Since ## n=gcd(n_{1}, n_{2}) ##, it follows that ## n_{1}=qn ## and ## n_{2}=tn ## with ## gcd(q, t)=1 ##.
Thus ## b-c=tnk_{2}-qnk_{1}=n(tk_{2}-qk_{1})\implies n\mid (b-c)\implies b\equiv c\pmod {n} ##.
Therefore, ## b\equiv c\pmod {n} ## if ## a\equiv b\pmod {n_{1}} ## and ## a\equiv c\pmod {n_{2}} ##, where the integer ## n=gcd(n_{1}, n_{2}) ##.
 
Physics news on Phys.org
That's fine.

Maybe a bit more intuitive is the following order of arguments (same as yours):

##n\,|\,n_1 \,|\,(a-b)## so ##a\equiv b\pmod n## and for symmetry reasons ##a\equiv c\pmod n.## Now ##\equiv## is an equivalence relation (reflexive, symmetric, transitive), hence ##b\equiv c \pmod n## which is the transitivity property.
 
Since ##px^9+q## is the factor, then ##x^9=\frac{-q}{p}## will be one of the roots. Let ##f(x)=27x^{18}+bx^9+70##, then: $$27\left(\frac{-q}{p}\right)^2+b\left(\frac{-q}{p}\right)+70=0$$ $$b=27 \frac{q}{p}+70 \frac{p}{q}$$ $$b=\frac{27q^2+70p^2}{pq}$$ From this expression, it looks like there is no greatest value of ##b## because increasing the value of ##p## and ##q## will also increase the value of ##b##. How to find the greatest value of ##b##? Thanks
Back
Top