Prove that whenever ## ab\equiv cd\pmod {n} ## and....

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The proof demonstrates that if \( ab \equiv cd \pmod{n} \) and \( b \equiv d \pmod{n} \) with \( \gcd(b, n) = 1 \), then it follows that \( a \equiv c \pmod{n} \). The argument relies on the properties of coprime integers, specifically that \( b \) has a multiplicative inverse modulo \( n \). By substituting \( d = b - nq \) into the original equation and simplifying, it is shown that \( n \mid (a - c) \), confirming the conclusion. The proof emphasizes the importance of demonstrating equivalences in proof writing.

PREREQUISITES
  • Understanding of modular arithmetic
  • Knowledge of the properties of the greatest common divisor (gcd)
  • Familiarity with Bézout's lemma
  • Concept of multiplicative inverses in modular systems
NEXT STEPS
  • Study the properties of modular arithmetic, focusing on congruences and their applications.
  • Learn about Bézout's lemma and its implications in number theory.
  • Explore the concept of multiplicative inverses in modular arithmetic, particularly in relation to coprime integers.
  • Practice writing formal proofs in number theory, emphasizing clarity and logical structure.
USEFUL FOR

This discussion is beneficial for students and professionals in mathematics, particularly those studying number theory, modular arithmetic, and proof writing techniques.

Math100
Messages
817
Reaction score
230
Homework Statement
Prove that whenever ## ab\equiv cd\pmod {n} ## and ## b\equiv d\pmod {n} ##, with ## gcd(b, n)=1 ##, then ## a\equiv c\pmod {n} ##.
Relevant Equations
None.
Proof:

Suppose ## ab\equiv cd\pmod {n} ## and ## b\equiv d\pmod {n} ##, with ## gcd(b, n)=1 ##.
Then ## n\mid (ab-cd)\implies nk=ab-cd ## and ## n\mid (b-d)\implies nq=b-d ## for some ## k, q\in\mathbb{Z} ##.
This means ## d=b-nq ##.
Now we substitute ## d=b-nq ## into the equation ## nk=ab-cd ##.
Observe that
\begin{align*}
nk=ab-c(b-nq)\\
nk=ab-bc+cnq\\
nk-cnq=b(a-c)\\
n(k-cq)=b(a-c)\\
nr=b(a-c)\\
\end{align*}
where ## r=k-cq ## is an integer.
Thus ## n\mid [b(a-c)] ##.
Note that ## b\mid m ## if ## b\mid (mn) ## and ## gcd(b, n)=1 ##.
Since ## n\mid [b(a-c)] ## and ## gcd(b, n)=1 ##, it follows that ## n\mid (a-c) ##.
Thus ## a\equiv c\pmod {n} ##.
Therefore, ## a\equiv c\pmod {n} ## whenever ## ab\equiv cd\pmod {n} ## and ## b\equiv d\pmod {n} ##, with ## gcd(b, n)=1 ##.
 
Physics news on Phys.org
That's correct.

You hadn't to introduce ##m## since ##m=a-c## has already names.

You used the fact that ##gcd(b,n)=1## is equivalent to the fact that ##b## has a multiplicative inverse modulo ##n## which is equivalent to the fact that ##1=sb+tn## for some integers ##s,t.## Once you have shown these equivalences (##b## and ##n## are coprime, ##b## has an inverse element modulo ##n##, Bézout's lemma: there are ##s,t## such that ##1=sb+tn##), you can use all of them, i.e. the one that fits best.

E.g., since ##b## has an inverse, we get from ##nr=b(a-c)## that ##b^{-1}nr=a-c## and thus ##a-c\equiv 0\pmod n.##

Or, even simpler:
\begin{align*}
gcd(b,n)=1 &\Longrightarrow \exists \,b^{-1} \pmod n \\&\Longrightarrow ab\equiv cd \equiv cb \pmod n\\
&\Longrightarrow a\equiv abb^{-1}\equiv cbb^{-1}\equiv c\pmod n
\end{align*}

You should show that they are equivalent in order to practice proof writing. This can be done e.g. by
##b## and ##n## are coprime ##\Longrightarrow ## there are ##s,t## such that ##1=sb+tn## ##\Longrightarrow ## ##b## has an inverse element modulo ##n## ##\Longrightarrow ## ##b## and ##n## are coprime
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
That's correct.

You hadn't to introduce ##m## since ##m=a-c## has already names.

You used the fact that ##gcd(b,n)=1## is equivalent to the fact that ##b## has a multiplicative inverse modulo ##n## which is equivalent to the fact that ##1=sb+tn## for some integers ##s,t.## Once you have shown these equivalences (##b## and ##n## are coprime, ##b## has an inverse element modulo ##n##, Bézout's lemma: there are ##s,t## such that ##1=sb+tn##), you can use all of them, i.e. the one that fits best.

E.g., since ##b## has an inverse, we get from ##nr=b(a-c)## that ##b^{-1}nr=a-c## and thus ##a-c\equiv 0\pmod n.##

Or, even simpler:
\begin{align*}
gcd(b,n)=1 &\Longrightarrow \exists \,b^{-1} \pmod n \\&\Longrightarrow ab\equiv cd \equiv cb \pmod n\\
&\Longrightarrow a\equiv abb^{-1}\equiv cbb^{-1}\equiv c\pmod n
\end{align*}

You should show that they are equivalent in order to practice proof writing. This can be done e.g. by
##b## and ##n## are coprime ##\Longrightarrow ## there are ##s,t## such that ##1=sb+tn## ##\Longrightarrow ## ##b## has an inverse element modulo ##n## ##\Longrightarrow ## ##b## and ##n## are coprime
I like the one you've used under "Or, even simpler:".
 
  • Like
Likes   Reactions: fresh_42
Math100 said:
I like the one you've used under "Or, even simpler:".
But it was written a bit sloppy. Better would have been:

\begin{align*}
ab\equiv cd \pmod n \wedge b\equiv d \pmod n &\Longrightarrow ab\equiv cd \equiv cb \pmod n\\
gcd(b,n)=1 &\Longrightarrow \exists \,b^{-1} \pmod n \\
&\Longrightarrow a\equiv abb^{-1}\equiv cbb^{-1}\equiv c\pmod n
\end{align*}
 
  • Like
Likes   Reactions: Math100

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
6
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K