Prove that ## x\equiv 1\pmod {2n} ##

  • Thread starter Thread starter Math100
  • Start date Start date
AI Thread Summary
The proof demonstrates that if x is congruent to a modulo n, then x is either congruent to a modulo 2n or to a+n modulo 2n. It starts by expressing x in terms of a and an integer t, analyzing two cases based on whether t is even or odd. In the first case, where t is even, it shows that x remains congruent to a modulo 2n. In the second case, where t is odd, it establishes that x is congruent to a+n modulo 2n. Thus, the conclusion is validated without any objections or additional comments.
Math100
Messages
813
Reaction score
229
Homework Statement
If ## x\equiv a\pmod {n} ##, prove that either ## x\equiv a\pmod {2n} ## or ## x\equiv a+n\pmod {2n} ##.
Relevant Equations
None.
Proof:

Suppose ## x\equiv a\pmod {n} ##.
Then ## x=a+tn ## for some ## t\in\mathbb{Z} ##.
Now we consider two cases.
Case #1: Suppose ## t ## is even.
Then ## t=2m ## for some ## m\in\mathbb{Z} ##.
Observe that ## x=a+tn=a+2nm ##.
Thus ## x\equiv a\pmod {2n} ##.
Case #2: Suppose ## t ## is odd.
Then ## t=2m+1 ## for some ## t\in\mathbb{Z} ##.
Observe that ## x=a+tn=a+(2m+1)n=a+n+2mn ##.
Thus ## x\equiv a+n\pmod {2n} ##.
Therefore, if ## x\equiv a\pmod {n} ##, then either ## x\equiv a\pmod {2n} ## or ## x\equiv a+n\pmod {2n} ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: If ## x\equiv a\pmod {n} ##, prove that either ## x\equiv a\pmod {2n} ## or ## x\equiv a+n\pmod {2n} ##.
Relevant Equations:: None.

Proof:

Suppose ## x\equiv a\pmod {n} ##.
Then ## x=a+tn ## for some ## t\in\mathbb{Z} ##.
Now we consider two cases.
Case #1: Suppose ## t ## is even.
Then ## t=2m ## for some ## m\in\mathbb{Z} ##.
Observe that ## x=a+tn=a+2nm ##.
Thus ## x\equiv a\pmod {2n} ##.
Case #2: Suppose ## t ## is odd.
Then ## t=2m+1 ## for some ## t\in\mathbb{Z} ##.
Observe that ## x=a+tn=a+(2m+1)n=a+n+2mn ##.
Thus ## x\equiv a+n\pmod {2n} ##.
Therefore, if ## x\equiv a\pmod {n} ##, then either ## x\equiv a\pmod {2n} ## or ## x\equiv a+n\pmod {2n} ##.
Yep. Nothing to add or complain about.
 
fresh_42 said:
Yep. Nothing to add or complain about.
You've never complained about my proof.
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Essentially I just have this problem that I'm stuck on, on a sheet about complex numbers: Show that, for ##|r|<1,## $$1+r\cos(x)+r^2\cos(2x)+r^3\cos(3x)...=\frac{1-r\cos(x)}{1-2r\cos(x)+r^2}$$ My first thought was to express it as a geometric series, where the real part of the sum of the series would be the series you see above: $$1+re^{ix}+r^2e^{2ix}+r^3e^{3ix}...$$ The sum of this series is just: $$\frac{(re^{ix})^n-1}{re^{ix} - 1}$$ I'm having some trouble trying to figure out what to...
Back
Top