Prove the following assertion: ## ca\equiv cb \mod cn ##.

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The assertion that if ## a \equiv b \mod n ## and ## c > 0 ##, then ## ca \equiv cb \mod cn ## is proven through basic algebraic manipulation. The proof begins by assuming ## a \equiv b \mod n ##, leading to the conclusion that ## n \mid (a-b) ##, which implies ## kn = a-b ## for some integer ## k ##. The relationship ## ca - cb = ckn ## is established, confirming that ## ca \equiv cb \mod cn ## without the necessity of ## c \mid n ##, as it is not required for the proof.

PREREQUISITES
  • Understanding of modular arithmetic
  • Familiarity with algebraic manipulation
  • Knowledge of integer divisibility
  • Basic proof techniques in mathematics
NEXT STEPS
  • Study the properties of modular arithmetic in detail
  • Learn about integer divisibility and its implications in proofs
  • Explore advanced proof techniques in number theory
  • Investigate the applications of modular arithmetic in cryptography
USEFUL FOR

Mathematics students, educators, and anyone interested in number theory and modular arithmetic proofs.

Math100
Messages
817
Reaction score
230
Homework Statement
Prove the following assertion:
If ## a\equiv b \mod n ## and ## c>0 ##, then ## ca\equiv cb \mod cn ##.
Relevant Equations
None.
Proof:

Suppose ## a\equiv b \mod n ## and ## c\mid n ##.
Then ## n\mid (a-b)\implies kn=a-b ## for some ## k\in\mathbb{Z} ##.
Since ## c\mid n ##, it follows that ## ca-cb=ckn\implies ca-cb=k(cn) ##.
Thus ## ca\equiv cb \mod cn ##.
Therefore, if ## a\equiv b \mod n ## and ## c>0 ##, then ## ca\equiv cb \mod cn ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Prove the following assertion:
If ## a\equiv b \mod n ## and ## c>0 ##, then ## ca\equiv cb \mod cn ##.
Relevant Equations:: None.

Proof:

Suppose ## a\equiv b \mod n ## and ## c\mid n ##.
Then ## n\mid (a-b)\implies kn=a-b ## for some ## k\in\mathbb{Z} ##.
Since ## c\mid n ##, it follows that ## ca-cb=ckn\implies ca-cb=k(cn) ##.
Thus ## ca\equiv cb \mod cn ##.
Therefore, if ## a\equiv b \mod n ## and ## c>0 ##, then ## ca\equiv cb \mod cn ##.
The given information does not say that ##c## divides ##n## .

Furthermore, you don't need that in the place that you used it. All that's needed there is some basic algebra.
 
SammyS said:
The given information does not say that ##c## divides ##n## .

Furthermore, you don't need that in the place that you used it. All that's needed there is some basic algebra.
Then should I write "Suppose ## a\equiv b \mod n ## and ## c>0 ##" in the first sentence? And how can I show/prove or where should I insert that ## c\mid n ##?
 
Math100 said:
Then should I write "Suppose ## a\equiv b \mod n ## and ## c>0 ##" in the first sentence? And how can I show/prove or where should I insert that ## c\mid n ##?
Not anywhere in this proof.

The problem does not state that ## c\mid n ##. So, as you might expect, it's not needed for the proof.
 
  • Like
Likes   Reactions: Delta2
Suppose ## a\equiv b \mod n ## and ## c>0 ##.
Then ## n\mid (a-b)\implies kn=a-b ## for some ## k\in\mathbb{Z} ##.
Note that ## ca-cb=ckn\implies ca-cb=k(cn) ##.
Thus ## ca\equiv cb \mod cn ##.
Therefore, if ## a\equiv b \mod n ## and ## c>0 ##, then ## ca\equiv cb \mod cn ##.

How about this revised proof above?
 
  • Like
Likes   Reactions: fresh_42 and Delta2
Math100 said:
Suppose ## a\equiv b \mod n ## and ## c>0 ##.
Then ## n\mid (a-b)\implies kn=a-b ## for some ## k\in\mathbb{Z} ##.
Note that ## ca-cb=ckn\implies ca-cb=k(cn) ##.
Thus ## ca\equiv cb \mod cn ##.
Therefore, if ## a\equiv b \mod n ## and ## c>0 ##, then ## ca\equiv cb \mod cn ##.

How about this revised proof above?
Yes. That's good.
 
  • Like
Likes   Reactions: Math100

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
27
Views
3K
Replies
17
Views
3K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K