MHB Proving $A=B$ from Sets $A,B,C$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Sets
Albert1
Messages
1,221
Reaction score
0
Three sets $A,B,C$ given:

(1)$A\bigcup C=B\bigcup C$

and

(2)$A\bigcap C=B \bigcap C$

Prove: $A=B$
 
Mathematics news on Phys.org
Albert said:
Three sets $A,B,C$ given:

(1)$A\bigcup C=B\bigcup C$ and (2)$A\bigcap C=B \bigcap C$
Prove: $A=B$

Let's prove that $A\subset B$ $$x\in A\Rightarrow x\in A\cup C=B\cup C\Rightarrow \left \{ \begin{matrix} x\in B\\\vee\\x\in C\end{matrix}\right.$$ $$\Rightarrow \left \{ \begin{matrix} x\in B\\\vee\\x\in A\cap C=B\cap C\end{matrix}\right.\Rightarrow \left \{ \begin{matrix} x\in B\\\vee\\x\in B\end{matrix}\right.\Rightarrow x\in B.$$ In the same way, we could prove that $B\subset A.$
 
Fernando Revilla said:
Let's prove that $A\subset B$ $$x\in A\Rightarrow x\in A\cup C=B\cup C\Rightarrow \left \{ \begin{matrix} x\in B\\\vee\\x\in C\end{matrix}\right.$$ $$\Rightarrow \left \{ \begin{matrix} x\in B\\\vee\\x\in A\cap C=B\cap C\end{matrix}\right.\Rightarrow \left \{ \begin{matrix} x\in B\\\vee\\x\in B\end{matrix}\right.\Rightarrow x\in B.$$ In the same way, we could prove that $B\subset A.$
Thanks! very good !
sol-1
$A=A\cup(A\cap C)
=A\cup(B\cap C)
=(A\cup B)\cap (A\cup C)$
$=(B\cup A)\cap (B\cup C)
=B\cup (A\cap C)$
$=B\cup(B\cap C)=B$
sol-2
$A=A\cap(A\cup C)
=A\cap(B\cup C)
=(A\cap B)\cup (A\cap C)$
$=(B\cap A)\cup (B\cap C)
=B\cap (A\cup C)$
$=B\cap(B\cup C)=B$
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top