MHB Proving $A=B$ from Sets $A,B,C$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Sets
Click For Summary
Given sets A, B, and C, the conditions A ∪ C = B ∪ C and A ∩ C = B ∩ C are established. From the first condition, it can be inferred that the elements of A and B must be equal when elements of C are removed. The second condition indicates that any common elements between A and C are also present in B and C. Therefore, by eliminating the influence of set C, it can be concluded that A must equal B. This demonstrates that under the provided conditions, A = B is proven.
Albert1
Messages
1,221
Reaction score
0
Three sets $A,B,C$ given:

(1)$A\bigcup C=B\bigcup C$

and

(2)$A\bigcap C=B \bigcap C$

Prove: $A=B$
 
Mathematics news on Phys.org
Albert said:
Three sets $A,B,C$ given:

(1)$A\bigcup C=B\bigcup C$ and (2)$A\bigcap C=B \bigcap C$
Prove: $A=B$

Let's prove that $A\subset B$ $$x\in A\Rightarrow x\in A\cup C=B\cup C\Rightarrow \left \{ \begin{matrix} x\in B\\\vee\\x\in C\end{matrix}\right.$$ $$\Rightarrow \left \{ \begin{matrix} x\in B\\\vee\\x\in A\cap C=B\cap C\end{matrix}\right.\Rightarrow \left \{ \begin{matrix} x\in B\\\vee\\x\in B\end{matrix}\right.\Rightarrow x\in B.$$ In the same way, we could prove that $B\subset A.$
 
Fernando Revilla said:
Let's prove that $A\subset B$ $$x\in A\Rightarrow x\in A\cup C=B\cup C\Rightarrow \left \{ \begin{matrix} x\in B\\\vee\\x\in C\end{matrix}\right.$$ $$\Rightarrow \left \{ \begin{matrix} x\in B\\\vee\\x\in A\cap C=B\cap C\end{matrix}\right.\Rightarrow \left \{ \begin{matrix} x\in B\\\vee\\x\in B\end{matrix}\right.\Rightarrow x\in B.$$ In the same way, we could prove that $B\subset A.$
Thanks! very good !
sol-1
$A=A\cup(A\cap C)
=A\cup(B\cap C)
=(A\cup B)\cap (A\cup C)$
$=(B\cup A)\cap (B\cup C)
=B\cup (A\cap C)$
$=B\cup(B\cap C)=B$
sol-2
$A=A\cap(A\cup C)
=A\cap(B\cup C)
=(A\cap B)\cup (A\cap C)$
$=(B\cap A)\cup (B\cap C)
=B\cap (A\cup C)$
$=B\cap(B\cup C)=B$
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K