Mathematica Proving Mathematical Induction using 2^n>n, n≥1 | Homework Solution

Click For Summary
SUMMARY

The forum discussion centers on proving the inequality 2n > n for n ≥ 1 using mathematical induction. The initial base case for n=1 is established correctly, showing that 2 > 1. The challenge arises in the inductive step, where the user struggles with the expression k + k > k + 1. The correct approach is clarified, emphasizing that k + k ≥ k + 1 holds for k ≥ 1, which supports the inductive hypothesis. The conclusion confirms that the inequality holds for all positive integers n.

PREREQUISITES
  • Understanding of mathematical induction principles
  • Familiarity with inequalities and their properties
  • Basic knowledge of exponentiation
  • Ability to manipulate algebraic expressions
NEXT STEPS
  • Study the principles of mathematical induction in detail
  • Learn about inequalities and their proofs in mathematics
  • Explore examples of induction proofs involving exponential functions
  • Practice solving problems related to inequalities and induction
USEFUL FOR

Students studying mathematics, particularly those learning about mathematical induction, educators teaching proof techniques, and anyone interested in understanding inequalities in number theory.

Physicsissuef
Messages
908
Reaction score
0

Homework Statement



2^n>n , n\geq 1

Homework Equations


The Attempt at a Solution



n=1

2^1>1

2>1

n=k

2^k>k

n=k+1

2^k^+^1=2^k*2>2k=k+k>k+1

2^k^+^1>k+1

Ok, I don't understand the part k+k>k+1
If I get k=1 (from the k\geq 1)
1+1>1+1
2>2 which is not actually correct. Any help?
 
Physics news on Phys.org
what you should have is
k+k\geq k+1, \quad k\geq 1
then your first ">" will give you the desire relationship
 
It looked to me like you were on your way to solving this correctly, so my guess is that you've just misunderstood either what you're supposed to do (which happens a lot when people learn induction) or that you haven't recognized what you've done.

Let's spell out what you've done:
Physicsissuef said:

The Attempt at a Solution



n=1

2^1>1

2>1
Okay, that's step 1: show that what you're trying to prove is true for one specific case (n=1). Now you go to step 2, i.e. show that if it's true for some value of n, say, n=k, then it must also be true for the next value, n=k+1.
Physicsissuef said:
n=k

2^k>k
Okay, we've assumed that it's true for n=k ...
Physicsissuef said:
n=k+1

2^k^+^1=2^k*2>2k=k+k>k+1

2^k^+^1>k+1

Ok, I don't understand the part k+k>k+1
If I get k=1 (from the k\geq 1)
1+1>1+1
2>2 which is not actually correct. Any help?
Now here's where you lost me. You're attempting to show that for n=k+1 you get
2^{k+1}>k+1,
given your assumption that 2^k>k.

You've got that
2^k^+^1=2^k*2
and since by assumption
2^k>k
you know that
2^k*2>k*2,
which means (combining these expressions)
2^k^+^1>k*2.
So, the question boils down to this: is k*2>k+1, which would give you what you're trying to prove?

Is it?

(I still don't understand your question about the n=1 case, but maybe it's moot now...)
 
Oh! Now I see what you were asking! You're not sure if you can make the final jump for the case k=1.

Keep in mind that what you're really trying to show is that 2^{k+1}>k*2 ... will that still be true in this case?
 
belliott4488 said:
Oh! Now I see what you were asking! You're not sure if you can make the final jump for the case k=1.

Keep in mind that what you're really trying to show is that 2^{k+1}>k*2 ... will that still be true in this case?

This is standard principle for solving tasks like this. So, yes, will it be still true? As far as I know, it wouldn't be true. So it must be, k+k\geq k+1, \quad k\geq 1, which is not what my "book result" says. Maybe its their typo fault.
 
Physicsissuef said:
This is standard principle for solving tasks like this. So, yes, will it be still true? As far as I know, it wouldn't be true. So it must be, k+k\geq k+1, \quad k\geq 1, which is not what my "book result" says. Maybe its their typo fault.
I'm not sure I understand. The problem states that the relation should be true for n\geq1, so finding that the inductive relation works for k\geq1 is consistent with that, isn't it? In other words, you've shown that:
1. The relation is true for n = 1.
2. If the relation holds for some value of n=k, k\geq1, then it also hold for n=k+1.

Doesn't that do what you want?
 
belliott4488 said:
I'm not sure I understand. The problem states that the relation should be true for n\geq1, so finding that the inductive relation works for k\geq1 is consistent with that, isn't it? In other words, you've shown that:
1. The relation is true for n = 1.
2. If the relation holds for some value of n=k, k\geq1, then it also hold for n=k+1.

Doesn't that do what you want?

Do you look the part k+k>k+1 ?? Try to do k=1, you'll get 1+1>1+1, which is not actually correct.
 
What I would do is use a separate induction:
if n>1 then n+n> n+1.

If n= 2 then n+n= 2+ 2= 4> 3= 2+ 1= n+1

Assume that, for a fixed k> 1, k+ k> k+1

Then (k+1)+ (k+1)= k+ k+ 2> (k+1)+ 2> (k+ 1)+ 1 because 2> 1.

(k+ k\ge k+ 1 is true for all positive integers.)
 
HallsofIvy said:
What I would do is use a separate induction:
if n>1 then n+n> n+1.

If n= 2 then n+n= 2+ 2= 4> 3= 2+ 1= n+1

Assume that, for a fixed k> 1, k+ k> k+1

Then (k+1)+ (k+1)= k+ k+ 2> (k+1)+ 2> (k+ 1)+ 1 because 2> 1.

(k+ k\ge k+ 1 is true for all positive integers.)

Is it correct, like I wrote on the first post?
Is it correct, if I write k+ k\ge k+ 1?
 
  • #10
HallsofIvy said:
What I would do is use a separate induction:
if n>1 then n+n> n+1.

If n= 2 then n+n= 2+ 2= 4> 3= 2+ 1= n+1

Assume that, for a fixed k> 1, k+ k> k+1

Then (k+1)+ (k+1)= k+ k+ 2> (k+1)+ 2> (k+ 1)+ 1 because 2> 1.

(k+ k\ge k+ 1 is true for all positive integers.)

But shouldn't it be k\geq1, so k+k\geq k+1 ?
 
  • #11
Physicsissuef said:
But shouldn't it be k\geq1, so k+k\geq k+1 ?

That's what I said, isn't it? That k+ k\ge k+ 1 for all positive integers?
 
  • #12
If we take, k+k\geq k+1
Than it should be:
2^k^+^1 \geq k+1
from:
2^k^+^1=2^k*2>2k=k+k \geq k+1
which is not completely true.
Because also
2^k^+^1 > k+1 is correct.
 
  • #13
Any help?
 
  • #14
If it is true that A> B then it is certainly true that A\ge B!
 
  • #15
HallsofIvy said:
If it is true that A> B then it is certainly true that A\ge B!

But we need to prove that A>B and not A\geB.
 
  • #16
Now, I understand. It was a typo error on my part.

I had stated at the beginning that you could do a separate induction to prove "if n>1 then n+n> n+1" which has ">" and that was what I proved. Unfortunately, I then wrote "\ge" in the last line when I didn't mean to.
 
  • #17
So, in my book, is not correct at all, right?
 
  • #18
What are you referring to? It is true that for n any positive integer, 2n> n. What I have been talking about was the "part" of that I proved: If n> 1, then 2n= n+ n> n+ 1. In fact, what I started to prove, and then confused myself about, was that if n is any integer, 2n\ge n+ 1.

To prove THAT: If n= 1, 2n= 2= n+1 so it is true.

If it is true for any k, then 2(k+ 1)= 2k+ 2> (2k+1)+ 1> 2k so 2(k+1)\ge(k+1)+ 1 and we are done.


Now for your original problem (which has been going on long enough!):
If n= 1, then 21= 2> 1.

Assume that 2k> k for some k. Then 2k+1= 2(2k)> 2k ge k+1 and we are done.
 
  • #19
HallsofIvy said:
What are you referring to? It is true that for n any positive integer, 2n> n. What I have been talking about was the "part" of that I proved: If n> 1, then 2n= n+ n> n+ 1. In fact, what I started to prove, and then confused myself about, was that if n is any integer, 2n\ge n+ 1.

To prove THAT: If n= 1, 2n= 2= n+1 so it is true.

If it is true for any k, then 2(k+ 1)= 2k+ 2> (2k+1)+ 1> 2k so 2(k+1)\ge(k+1)+ 1 and we are done.


Now for your original problem (which has been going on long enough!):
If n= 1, then 21= 2> 1.

Assume that 2k> k for some k. Then 2k+1= 2(2k)> 2k \ge k+1 and we are done.
But if we say that 2k+1= 2(2k)> 2k \ge k+1
then 2k+1 \ge k+1,
and what the original problem is 2k+1 > k+1
Do you understand what I mean?
 
  • #20
Any help, please?
 
  • #21
I'm not sure how to make this clearer, but I'll try.

I think we're in agreement that you can show the following:

Case 1: n=1: 2^1>1

Case k: n=k: assert that 2^k>k

Case k+1:
2^{k+1}=2*2^k
2^{k+1}>2*k, by assertion
2^{k+1}>k+k

From the last line we can unambiguously conclude that
2^{k+1}>k+1
for any k greater than or equal to 1.

Is that not what you wanted to prove? Where does the ambiguity between "greater than" and "greater" enter?

It seems that you are asserting that
if a>b \geq c,
then a \geq c, which is not correct.
a>c would be the correct conclusion.
 
  • #22
belliott4488 said:
I'm not sure how to make this clearer, but I'll try.

I think we're in agreement that you can show the following:

Case 1: n=1: 2^1>1

Case k: n=k: assert that 2^k>k

Case k+1:
2^{k+1}=2*2^k
2^{k+1}>2*k, by assertion
2^{k+1}>k+k

From the last line we can unambiguously conclude that
2^{k+1}>k+1
for any k greater than or equal to 1.

Is that not what you wanted to prove? Where does the ambiguity between "greater than" and "greater" enter?

It seems that you are asserting that
if a>b \geq c,
then a \geq c, which is not correct.
a>c would be the correct conclusion.

a \geq c wouldn't be correct?
 
  • #23
Hmm. "a\gec" includes "a> c" so I would say If it is true that a> c, then it is also true that a\ge c. It is true that 5> 4 and also true that 5\ge4. It is not as "precise" as saying a> c but it is still true. Perhaps belliiott4488 would disagree with that.
 
  • #24
why a>c is the correct conclusion? Can you give me some simplifed example, with real numbers?
Like when 5>4\ge3, then 5\ge3
 
  • #25
Yes, 5> 4\ge 3 tells you that 5\ge 3. I think Belliott4488 is saying that 5> 3 would be more "precise" since it would give more information. But precisely because 5> 3, it is true that 5\ge 3.

To get back to what you were doing, you were trying to prove, by induction, that 2n> n for all positive integers n.
Okay, if n= 1 that says 21= 2> 1 which is true.

Assume that 2k> k for some k. Then 2k+1= 2(2k) and, since 2k> k, that is greater than 2k. That was where you were stuck.

My point was that you can do another induction to show that, for any positive integer n, 2n\gen+1. Here you must have "\ge" since, with n= 1, 2(1)= 2= 1+ 1, not ">". But then you have 2k+1= 2(2k)> 2k\gek+1[/itex]. Because of the first ">", from that you can conclude either 2k+1k+1 or 2k+1\gek+1; they are both true but it is the first you need because that was what you were trying to prove.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
6
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
7K