A Question about dilaton monopole interaction derivation

user1139
Messages
71
Reaction score
8
TL;DR Summary
Please see below.
I am trying to understand how one derives the dilaton monopole interaction. In "Black holes and membranes in higher-dimensional theories with dilaton fields", Gibbons and Maeda mentioned that one could obtain the dilaton monopole interaction as such:

Dilaton monopole interaction derivation by Gibbons and Maeda.


where the action is given by

The action.


However, I do not understand their reasoning for introducing ##\Psi## to define ##\Sigma## in order to derive Eq. (4.8). Could someone explain it?
 
Physics news on Phys.org
If you look at the coefficient of (∇φ)2 in their equation 2.1, you'll see it's minus the square of the field redefinition factor. So they must be aiming for a dilaton kinetic term with a coefficient of 1.
 
mitchell porter said:
If you look at the coefficient of (∇φ)2 in their equation 2.1, you'll see it's minus the square of the field redefinition factor. So they must be aiming for a dilaton kinetic term with a coefficient of 1.
Still, how do they get ##\Sigma## from ##\Psi##? Did they just consider the asymptotic behaviour of ##\Psi## and define ##\Sigma## as such?
 
4.7, 4.8 are the same form as 4.5, 4.4, which describe electric charge and electrostatic potential. The reasoning would appear to be exactly analogous.
 
I seem to notice a buildup of papers like this: Detecting single gravitons with quantum sensing. (OK, old one.) Toward graviton detection via photon-graviton quantum state conversion Is this akin to “we’re soon gonna put string theory to the test”, or are these legit? Mind, I’m not expecting anyone to read the papers and explain them to me, but if one of you educated people already have an opinion I’d like to hear it. If not please ignore me. EDIT: I strongly suspect it’s bunk but...
Back
Top