A Question about dilaton monopole interaction derivation

user1139
Messages
71
Reaction score
8
TL;DR
Please see below.
I am trying to understand how one derives the dilaton monopole interaction. In "Black holes and membranes in higher-dimensional theories with dilaton fields", Gibbons and Maeda mentioned that one could obtain the dilaton monopole interaction as such:

Dilaton monopole interaction derivation by Gibbons and Maeda.


where the action is given by

The action.


However, I do not understand their reasoning for introducing ##\Psi## to define ##\Sigma## in order to derive Eq. (4.8). Could someone explain it?
 
Physics news on Phys.org
If you look at the coefficient of (∇φ)2 in their equation 2.1, you'll see it's minus the square of the field redefinition factor. So they must be aiming for a dilaton kinetic term with a coefficient of 1.
 
mitchell porter said:
If you look at the coefficient of (∇φ)2 in their equation 2.1, you'll see it's minus the square of the field redefinition factor. So they must be aiming for a dilaton kinetic term with a coefficient of 1.
Still, how do they get ##\Sigma## from ##\Psi##? Did they just consider the asymptotic behaviour of ##\Psi## and define ##\Sigma## as such?
 
4.7, 4.8 are the same form as 4.5, 4.4, which describe electric charge and electrostatic potential. The reasoning would appear to be exactly analogous.
 
I thought of posting this under Particle Physics, but it does go slightly beyond standard model, and in a way that could point to some larger theories, so I post it here. "A path to confine gluons and fermions through complex gauge theory" (Amaral et al 2020) "New picture on the mesons mass relations" (Amaral et al 2025) I'll try to summarize. There is a conventional explanation for the masses of the pions, kaons, and eta mesons. Eight of them are Goldstone bosons of the broken chiral...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 20 ·
Replies
20
Views
2K
Replies
3
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K