Chemistry Question about the Butler-Volmer equation in electrochemistry

  • Thread starter Thread starter Dishsoap
  • Start date Start date
  • Tags Tags
    Electrochemistry
AI Thread Summary
The Butler-Volmer equation relates current to overpotential, with equilibrium potential influenced by reactant and product concentrations. In cases where no product is initially present, such as with the chlorine redox reaction, determining the equilibrium potential becomes complex due to undefined logarithmic values. The discussion highlights that in the absence of chlorine, other reactions, like oxygen evolution, can dominate and set limits on the electrode potential. This indicates that the presence of alternative species can influence the expected potential for initiating the redox reaction. Understanding these interactions is crucial for accurately predicting electrochemical behavior in such scenarios.
Dishsoap
Messages
1,016
Reaction score
308
Homework Statement
Not an actual homework question, but as a physicist learning about electrochemistry I feel it is about that level.

My question is, how do I calculate the equilibrium potential ##E_{eq}## of an electrode in a fluid with no initial concentration of products?
Relevant Equations
(also pasting in main text in case LaTex doesn't work here)

##i\propto \frac{C_R(0,t)}{C_R^*}e^{(1-\alpha)f \eta}##
##\eta = E-E_{eq}##
##E_{eq}=E^{0'}+\frac{RT}{F}ln(\frac{C_O^*}{C_R^*})##
I am reading Bard & Faulkner, who states that the current given by the Butler-Volmer equation is related to the overpotential ##\eta##, which is the ##\eta=E_{app}-E^0-E_{eq}##. The equilibrium potential depends strongly on the initial bulk concentration of products and reactants, ##E_{eq}=E^{0'}+\frac{RT}{F}ln(\frac{C_O^*}{C_R^*})##.Eapp.

This makes sense for e.g. the water electrolysis reaction, and says that the potential needed for the reaction to proceed is around 0.8V at neutral pH instead of the formal potential of 1.3V due to the presence of ##H^+## in the solution.

However, what about reactions where there is no product in the fluid initially? For instance, the chlorine redox reaction ##2Cl^- -> 2e^- + Cl_2(g)##. If there is no chlorine in the fluid to begin with, how does one write down the equilibrium potential?

My first thought is that in the logarithm for ##E_{eq}##, either ##C_O^*## or ##C_R^*## would be zero depending on which direction the reaction would proceed. However, the logarithm of zero is undefined. How does one proceed?

I just want to figure out at what electrode potential I should expect to begin performing the redox reaction on Cl- ions in the fluid.

Thank you everyone!
 
Physics news on Phys.org
When there is no products from one system some other system jumps in (plenty of these) and limits the potential. If there is no Cl2 O2 is everywhere.
 
Thread 'Confusion regarding a chemical kinetics problem'
TL;DR Summary: cannot find out error in solution proposed. [![question with rate laws][1]][1] Now the rate law for the reaction (i.e reaction rate) can be written as: $$ R= k[N_2O_5] $$ my main question is, WHAT is this reaction equal to? what I mean here is, whether $$k[N_2O_5]= -d[N_2O_5]/dt$$ or is it $$k[N_2O_5]= -1/2 \frac{d}{dt} [N_2O_5] $$ ? The latter seems to be more apt, as the reaction rate must be -1/2 (disappearance rate of N2O5), which adheres to the stoichiometry of the...
I don't get how to argue it. i can prove: evolution is the ability to adapt, whether it's progression or regression from some point of view, so if evolution is not constant then animal generations couldn`t stay alive for a big amount of time because when climate is changing this generations die. but they dont. so evolution is constant. but its not an argument, right? how to fing arguments when i only prove it.. analytically, i guess it called that (this is indirectly related to biology, im...

Similar threads

Replies
3
Views
2K
Back
Top