There is a theorem for finite groups of isometries in a plane which says that there is a point in the plane fixed by every element in the group (theorem 6.4.7 in Algebra - M Artin). While the proof itself is fairly simple to understand, there is an unstated belief that this is the only point that is fixed. Can somebody point me to a proof that there is only one point fixed by the group over all points in the plane? I would be so grateful,(adsbygoogle = window.adsbygoogle || []).push({});

Thanks,

Kind regards,

--

SACHIN

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Regarding fixed points in finite groups of isometries

**Physics Forums | Science Articles, Homework Help, Discussion**