In the field of rationals [itex]\mathbb{Z}_{(p)}[/itex] (rationals in the ring of the p-adic integers), how is it possible to prove the residue field [itex]\mathbb{Z}_{(p)}/p\mathbb{Z}_{(p)}[/itex] is equal to [itex]\mathbb{Z}/p\mathbb{Z}[/itex] ?(adsbygoogle = window.adsbygoogle || []).push({});

I've narrowed it down to [itex]\mathbb{Z}_{(p)}/p\mathbb{Z}_{(p)} = \left\{ a/b\in\mathbb{Q} : p\nmid a, p \nmid b \right\} [/itex], but can't seem to make the last step...

Or maybe I'm barking up the wrong tree. Hmm...

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Residue field of p-adic integers

**Physics Forums | Science Articles, Homework Help, Discussion**