A $S^+$ and $S^{-}$ operators formula

  • A
  • Thread starter Thread starter LagrangeEuler
  • Start date Start date
  • Tags Tags
    Formula Operators
LagrangeEuler
Messages
711
Reaction score
22
For ##\hat{S}^+## and ##\hat{S}^{-}## operators for any given spin ##S## relation
\hat{S}^+|S,m \rangle=\sqrt{S(S+1)-m(m+1)}\hbar|S,m+1 \rangle
\hat{S}^-|S,m \rangle=\sqrt{S(S+1)-m(m-1)}\hbar|S,m-1 \rangle
Can someone please explain how we get those factors ##\sqrt{S(S+1)-m(m+1)}\hbar## and ##\sqrt{S(S+1)-m(m-1)}\hbar##?
In ##|S,m \rangle## ##S## denotes spin, and ##m## spin projection.
 
Physics news on Phys.org
I thought someone would already have answered this. For people who like algebra, it's one of those fun things to derive in quantum mechanics.

Let me list some facts about these operators
  1. ##S^{+} = S_x + i S_y##
  2. ##S^{-} = S_x - i S_y##
  3. ##S^2 = S_x^2 + S_y^2 + S_z^2##
  4. ##S_x S_y - S_y S_x = i S_z##
  5. ##S_z S^{+} = S^{+} (S_z + 1)##
  6. ##S_z S^{-} = S^{-} (S_z - 1)##
  7. ##S^{-} S^{+} = S^2 - S_z(S_z + 1)##
  8. ##(S^{+})^\dagger = S^{-}##
(The last 4 are provable from the first 4).

So if we let ##|m\rangle## be the state with ##S_z |m \rangle = m | m \rangle##,
then ##S_z S^- |m\rangle = S^- (S_z - 1) |m\rangle = S^- (m - 1) |m\rangle = (m-1) S^- |m\rangle##. So ##S^-|m\rangle## is an eigenstate of ##S_z## with eigenvalue ##m-1##. That means (assuming nondegeneracy of eigenvalues---I'm going to skip the argument for why this is the case, because I'm not sure why) that ##S^- |m\rangle## must be a multiple of ##|m-1\rangle##. So let's let ##\alpha_m## be the multiplier:

##S^- |m\rangle = \alpha_m |m-1\rangle##

Analogously, we can show that ##S^+ |m\rangle## has to be an eigenstate of ##S_z## with eigenvalue ##m+1##. So

##S^+ |m\rangle = \beta_m |m+1\rangle##

where ##\beta_m## is some unknown multiplier. We can relate ##\alpha_m## and ##\beta_m## by considering

##\langle m| S^- S^+ |m \rangle##

By our assumptions about ##S^+## and ##S^{-}##, we get:

##\langle m| S^- S^+ |m \rangle = \langle m| (S^+ \beta_m |m+1\rangle) = \langle m |\alpha_{m+1} \beta_m |m\rangle = \alpha_{m+1} \beta_m##. But we also know that ##\langle m| S^- S^+ |m \rangle = (S^+ |m\rangle)^\dagger (S^+ |m\rangle) = \langle m | \beta_m^* \beta_m |m \rangle##. So this proves that

##\beta_m^* = \alpha_{m+1}##

Now on the one hand:

##S^- S^+ |m\rangle = S^- \beta_m |m+1\rangle = \alpha_{m+1} \beta_m |m\rangle = |\beta_m|^2 |m \rangle##

On the other hand, by equation 7 above,

##S^- S^+ |m\rangle = (S^2 - S_z(S_z+1)) |m\rangle = (S^2 - m(m+1)) |m\rangle##

So we conclude that ##\beta_m = \sqrt{S^2 - m(m+1)}##.

But what are the eigenvalues of ##S^2##? Well, since ##S^2## must be greater than or equal to ##S_z^2##, we know that we can't keep raising the value of ##S_z## forever. But since ##S^+ |m\rangle = \beta_m |m+1\rangle##, the only way to prevent raising ##m## indefinitely is if for some maximal value of ##m##,

##S^+ |m_{\text{max}}\rangle = 0##

That implies that ##\beta_{m_{\text{max}}} = 0##.

So since we know an expression for ##\beta_m##,

##\sqrt{S^2 - m_{\text{max}}(m_{\text{max}}+1)} = 0##

That implies that ##S^2 = m_{\text{max}}(m_{\text{max}}+1)##

Rewriting ##m_{\text{max}} \equiv s## gives:
##S^2 =s (s+1)##

and ##\beta_m = \sqrt{s(s+1) - m(m+1)}##
 
  • Like
  • Informative
Likes vanhees71, LagrangeEuler, PeroK and 2 others
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...

Similar threads

Replies
1
Views
532
Replies
1
Views
627
Replies
9
Views
2K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
29
Views
3K
Replies
31
Views
2K
Back
Top