$S^+$ and $S^{-}$ operators formula

  • Context: Graduate 
  • Thread starter Thread starter LagrangeEuler
  • Start date Start date
  • Tags Tags
    Formula Operators
Click For Summary
SUMMARY

The discussion focuses on the derivation of the factors associated with the spin raising and lowering operators, denoted as ##\hat{S}^+## and ##\hat{S}^-##, in quantum mechanics. The operators are defined as ##\hat{S}^+|S,m \rangle=\sqrt{S(S+1)-m(m+1)}\hbar|S,m+1 \rangle## and ##\hat{S}^-|S,m \rangle=\sqrt{S(S+1)-m(m-1)}\hbar|S,m-1 \rangle##. Key relationships such as ##S^2 = S_x^2 + S_y^2 + S_z^2## and the commutation relations are established, leading to the conclusion that the eigenvalues of ##S^2## are given by ##S^2 = s(s+1)##, where ##s## is the maximum spin projection.

PREREQUISITES
  • Understanding of quantum mechanics principles, particularly angular momentum.
  • Familiarity with the notation and properties of spin operators.
  • Knowledge of eigenstates and eigenvalues in quantum systems.
  • Basic algebraic manipulation skills in the context of quantum mechanics.
NEXT STEPS
  • Study the derivation of angular momentum operators in quantum mechanics.
  • Learn about the implications of commutation relations in quantum systems.
  • Explore the concept of eigenvalues and eigenstates in more detail.
  • Investigate the role of spin in quantum mechanics and its applications in quantum computing.
USEFUL FOR

Students and professionals in physics, particularly those specializing in quantum mechanics, as well as researchers interested in the mathematical foundations of spin operators.

LagrangeEuler
Messages
711
Reaction score
22
For ##\hat{S}^+## and ##\hat{S}^{-}## operators for any given spin ##S## relation
\hat{S}^+|S,m \rangle=\sqrt{S(S+1)-m(m+1)}\hbar|S,m+1 \rangle
\hat{S}^-|S,m \rangle=\sqrt{S(S+1)-m(m-1)}\hbar|S,m-1 \rangle
Can someone please explain how we get those factors ##\sqrt{S(S+1)-m(m+1)}\hbar## and ##\sqrt{S(S+1)-m(m-1)}\hbar##?
In ##|S,m \rangle## ##S## denotes spin, and ##m## spin projection.
 
Physics news on Phys.org
I thought someone would already have answered this. For people who like algebra, it's one of those fun things to derive in quantum mechanics.

Let me list some facts about these operators
  1. ##S^{+} = S_x + i S_y##
  2. ##S^{-} = S_x - i S_y##
  3. ##S^2 = S_x^2 + S_y^2 + S_z^2##
  4. ##S_x S_y - S_y S_x = i S_z##
  5. ##S_z S^{+} = S^{+} (S_z + 1)##
  6. ##S_z S^{-} = S^{-} (S_z - 1)##
  7. ##S^{-} S^{+} = S^2 - S_z(S_z + 1)##
  8. ##(S^{+})^\dagger = S^{-}##
(The last 4 are provable from the first 4).

So if we let ##|m\rangle## be the state with ##S_z |m \rangle = m | m \rangle##,
then ##S_z S^- |m\rangle = S^- (S_z - 1) |m\rangle = S^- (m - 1) |m\rangle = (m-1) S^- |m\rangle##. So ##S^-|m\rangle## is an eigenstate of ##S_z## with eigenvalue ##m-1##. That means (assuming nondegeneracy of eigenvalues---I'm going to skip the argument for why this is the case, because I'm not sure why) that ##S^- |m\rangle## must be a multiple of ##|m-1\rangle##. So let's let ##\alpha_m## be the multiplier:

##S^- |m\rangle = \alpha_m |m-1\rangle##

Analogously, we can show that ##S^+ |m\rangle## has to be an eigenstate of ##S_z## with eigenvalue ##m+1##. So

##S^+ |m\rangle = \beta_m |m+1\rangle##

where ##\beta_m## is some unknown multiplier. We can relate ##\alpha_m## and ##\beta_m## by considering

##\langle m| S^- S^+ |m \rangle##

By our assumptions about ##S^+## and ##S^{-}##, we get:

##\langle m| S^- S^+ |m \rangle = \langle m| (S^+ \beta_m |m+1\rangle) = \langle m |\alpha_{m+1} \beta_m |m\rangle = \alpha_{m+1} \beta_m##. But we also know that ##\langle m| S^- S^+ |m \rangle = (S^+ |m\rangle)^\dagger (S^+ |m\rangle) = \langle m | \beta_m^* \beta_m |m \rangle##. So this proves that

##\beta_m^* = \alpha_{m+1}##

Now on the one hand:

##S^- S^+ |m\rangle = S^- \beta_m |m+1\rangle = \alpha_{m+1} \beta_m |m\rangle = |\beta_m|^2 |m \rangle##

On the other hand, by equation 7 above,

##S^- S^+ |m\rangle = (S^2 - S_z(S_z+1)) |m\rangle = (S^2 - m(m+1)) |m\rangle##

So we conclude that ##\beta_m = \sqrt{S^2 - m(m+1)}##.

But what are the eigenvalues of ##S^2##? Well, since ##S^2## must be greater than or equal to ##S_z^2##, we know that we can't keep raising the value of ##S_z## forever. But since ##S^+ |m\rangle = \beta_m |m+1\rangle##, the only way to prevent raising ##m## indefinitely is if for some maximal value of ##m##,

##S^+ |m_{\text{max}}\rangle = 0##

That implies that ##\beta_{m_{\text{max}}} = 0##.

So since we know an expression for ##\beta_m##,

##\sqrt{S^2 - m_{\text{max}}(m_{\text{max}}+1)} = 0##

That implies that ##S^2 = m_{\text{max}}(m_{\text{max}}+1)##

Rewriting ##m_{\text{max}} \equiv s## gives:
##S^2 =s (s+1)##

and ##\beta_m = \sqrt{s(s+1) - m(m+1)}##
 
  • Like
  • Informative
Likes   Reactions: vanhees71, LagrangeEuler, PeroK and 2 others

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K