Hi everybody.(adsbygoogle = window.adsbygoogle || []).push({});

I have a question regarding an example problem at about 22min on this lecture http://ocw.mit.edu/courses/mathemat...ecture-2-eulers-numerical-method-for-y-f-x-y/

The equation in question is y'=x[itex]^{2}[/itex]-y[itex]^{2}[/itex].

In an example regarding the Euler method, Prof. Mattuck describes the second derivative of the above function as

y'' = 2x - 2yy'

specifically mentioning the chain rule. Now, as I understand it (working backwards of course), the only way to this solution would be to consider y[itex]^{2}[/itex] as the function y(y(x)), giving the solution

yy' + y'y = 2yy'.

Now, assuming I correctly understand how the 2yy' portion of the solution was derived, my question is: how exactly was the second derivative determined to be

y""= 2x - 2yy' ?

If we take the derivative with respect to y (which presumably give us the 2yy' term we're looking for), wouldn't the "x" term (x[itex]^{2}[/itex]) be zero, as shown:

d/dy (y')= d/dy (x[itex]^{2}[/itex])- d/dy (y[itex]^{2}[/itex]) [itex]\Rightarrow[/itex] y''= 0 - 2yy'

Wolfram Alpha also seems to agree with me, but I'm afraid I'm more muddled than I'd like to believe

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Second derivative - wolfram giving one answer, professor giving another

**Physics Forums | Science Articles, Homework Help, Discussion**