MHB Sets Intersection Proof: G and {F(n)} Family of Sets

  • Thread starter Thread starter Guest2
  • Start date Start date
  • Tags Tags
    Sets
Guest2
Messages
192
Reaction score
0
If $G$ and $\left\{F(n): n \in \mathbb{K}\right\}$ are a family of sets, show that $\displaystyle G \cap \cap_{n \in \mathbb{K}}F(n) = \cap_{n \in \mathbb{K}}(F(n) \cap B).$

I said if $b$ is an ement of $\displaystyle G \cap \cap_{n \in \mathbb{K}}F(n)$ then $b$ is in both $G$ and $F(n)$ for every $n \in \mathbb{K}$. Say for example that there are $m$ lots of $n$ in $\mathbb{K}$ and denote these by $n_{1}, n_{2}, \cdots n_{m}$. We can pair each of $f(n_1), f(n_2), f(n_3), \cdots, f(n_m)$ with $G$ i.e. $b \in G \cap F(n_{1})$, $b \in G \cap F(n_{2})$, $b \in G \cap F(n_{3})$, $\cdots$, $b \in G \cap F(n_{m}).$ That's $b \in \cap_{n \in \mathbb{K}}(F(n) \cap B).$ Working backwards, implies $b \in G \cap F(n_{1})$, $b \in G \cap F(n_{2})$, $b \in G \cap F(n_{3})$, $\cdots$, $b \in G \cap F(n_{m})$. And we just get rid of the pairing - $b \in G$ and $b \in [f(n_1), f(n_2), f(n_3), \cdots, f(n_m)]$ i.e. $b \in G \cap \cap_{n \in \mathbb{K}}F(n)$. Therefore $\displaystyle G \cap \cap_{n \in \mathbb{K}}F(n) = \cap_{n \in \mathbb{K}}(F(n) \cap B).$

I'm pretty sure the above is pretty crap. Could someone please post up a proof - I'm completely lost on how to write maths proofs. I can prove bit more difficult stuff, but the fact that it appears something so obvious puts me off completely (I'm not sure how much to leave out etc).
 
Physics news on Phys.org
Here is a suggestion. When you have two sets $A$ and $B$ and you want to show $A=B$ you show that any element of $A$ is in $B$ and any element of $B$ is in $A$. Try using this approach.

You want to prove,
$$ A \cap \left( \bigcap_{n=0}^{\infty} B_n \right) = \bigcap_{n=0}^{\infty} (A\cap B_n) $$
If,
$$x\in A \cap \left( \bigcap_{n=0}^{\infty} B_n \right) \implies x \in A \text{ and }x \in \bigcap_{n=0}^{\infty} B_n $$
Then, as $x\in \bigcap_{n=0}^{\infty} B_n$ it means $x\in B_n$ for every $n$.

Thus, $x\in A$ and $x\in B_n$, so $x\in (A\cap B_n)$ for every $n$. In particular,
$$ x\in \bigcap_{n=0}^{\infty} (A\cap B_n) $$
Now do the argument in reverse, if you know what I am sayin'.
 
Last edited:
ThePerfectHacker said:
Here is a suggestion. When you have two sets $A$ and $B$ and you want to show $A=B$ you show that any element of $A$ is in $B$ and any element of $B$ is in $A$. Try using this approach.

You want to prove,
$$ A \cap \left( \bigcap_{n=0}^{\infty} B_n \right) = \bigcap_{n=0}^{\infty} (A\cap B_n) $$
If,
$$x\in A \cap \left( \bigcap_{n=0}^{\infty} B_n \right) \implies x \in A \text{ and }x \in \bigcap_{n=0}^{\infty} B_n $$
Then, as $x\in \bigcap_{n=0}^{\infty} B_n$ it means $x\in B_n$ for every $n$.

Thus, $x\in A$ and $x\in B_n$, so $x\in (A\cap B_n)$ for every $n$. In particular,
$$ x\in \bigcap_{n=0}^{\infty} (A\cap B_n) $$
Now do the argument in reverse, if you know what I am sayin'.
Thank you very much. That's what I've been trying to do, but failed horribly.

So suppose $ x\in \bigcap_{n=0}^{\infty} (A\cap B_n) $, then $ x \in (A \cap B_n)$ for every $n$, i.e. $x \in A$ and $x \in B_n$ for every $n$, that's $ x\in A \cap \bigcap_{n=0}^{\infty} B_n. $
 
In an attempt to really understand the proof, I replaced one of the intersections with complement.

$$ A \setminus \left( \bigcap_{n=0}^{\infty} B_n \right) = \bigcap_{n=0}^{\infty} (A\setminus B_n) $$
If,
$$x\in A \setminus \left( \bigcap_{n=0}^{\infty} B_n \right) \implies x \in A \text{ and }x \not \in \bigcap_{n=0}^{\infty} B_n $$
Then, as $x \not \in \bigcap_{n=0}^{\infty} B_n$ it means $x \not \in B_n$ for every $n$.

Thus, $x\in A$ and $x \not \in B_n$, so $x \in (A\setminus B_n)$ for every $n$. And

$$ x\in \bigcap_{n=0}^{\infty} (A\setminus B_n) $$

And we do the argument in reverse. I can't find my error. (Giggle)
 
If $x\in \bigcap_{n=0}^{\infty} B_n$ it means $x\in B_n$ for all $n$.

Thus,

If $x\not \in \bigcap_{n=0}^{\infty} B_n$ it means $x\not \in B_n$ for some $n$.
 
Oh, I see. Thanks. Is this right now then?

If,
$$x\in A \setminus \left( \bigcap_{n=0}^{\infty} B_n \right) \implies x \in A \text{ and }x \not \in \bigcap_{n=0}^{\infty} B_n $$
Then, as $x \not \in \bigcap_{n=0}^{\infty} B_n$ it means $x \not \in B_n$ for some $n$.

Thus, $x\in A$ and $x \not \in B_n$, for some $n$, so $x \in (A\setminus B_n)$ for some $n$. In particular,

$$ x\in \bigcup_{n=0}^{\infty} (A\setminus B_n). $$

Doing the reverse, let $$ x\in \bigcup_{n=0}^{\infty} (A\setminus B_n). $$ Then $x \in (A\setminus B_n)$ for some $n$. That's $x\in A$ and $x \not \in B_n$ for some $n$ and the latter implies $ \displaystyle x \not \in \bigcap_{n=1}^{\infty}B_n$, so $\displaystyle x \in A \setminus \bigcap_{n=1}^{\infty}B_n$.

Therefore $\displaystyle A \setminus \bigcap_{n=1}^{\infty}B_n = \bigcup_{n=1}^{\infty} (A \setminus B_n) $.
 
Very good.
 
ThePerfectHacker said:
Very good.
Thank you ever so much. I've learned a lot tonight.
 
Back
Top