Show that ## (-13)^{n+1}\equiv (-13)^{n}+(-13)^{n-1}\pmod {181} ##?

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
The proof demonstrates that for all integers n ≥ 1, the equation (-13)^{n+1} ≡ (-13)^{n} + (-13)^{n-1} (mod 181) holds true using mathematical induction. It starts by verifying the base case for n=1, confirming that 169 ≡ -12 (mod 181) is valid. Assuming the statement is true for n=k, the proof then shows it must also hold for n=k+1 through algebraic manipulation. The proof concludes by establishing the inductive step, thereby confirming the statement for all n ≥ 1. This completes the induction proof successfully.
Math100
Messages
816
Reaction score
229
Homework Statement
For ## n\geq 1 ##, show that ## (-13)^{n+1}\equiv (-13)^{n}+(-13)^{n-1}\pmod {181} ##.
[Hint: Notice that ## (-13)^{2}\equiv -13+1\pmod {181} ##; use induction on ## n ##.]
Relevant Equations
None.
Proof:

The proof is by induction.
(1) When ## n=1 ##, the statement is ## (-13)^{1+1}\equiv (-13)^{1}+(-13)^{1-1}\pmod {181}\implies 169\equiv -12\pmod {181} ##, which is true.
(2) Now assume the statement is true for some integer ## n=k\geq 1 ##, that is assume ## (-13)^{k+1}\equiv (-13)^{k}+(-13)^{k-1}\pmod {181} ##. Next, we will show that the statement for ## n=k+1 ## is true. Observe that
\begin{align*}
(-13)^{(k+1)+1} &\equiv [(-13)^{k+1}+(-13)^{(k+1)-1}]\pmod{181}\\
&\implies (-13)^{k+2}\equiv [(-13)^{k+1}+(-13)^{k}] \pmod{181}.
\end{align*}
Thus
\begin{align*}
(-13)^{k+2}&\equiv (-13)(-13)^{k+1}\\
&\equiv (-13)[(-13)^{k}+(-13)^{k-1}]\pmod {181}\\
&\equiv [(-13)^{k+1}+(-13)^{k}]\pmod {181}.
\end{align*}
This establishes ## (-13)^{k+2}\equiv [(-13)^{k+1}+(-13)^{k}]\pmod {181} ##, which implies that the statement is true for ## n=k+1 ##.
The proof by induction is complete.
Therefore, ## (-13)^{n+1}\equiv (-13)^{n}+(-13)^{n-1}\pmod {181} ## for ## n\geq 1 ##.
 
Last edited:
Physics news on Phys.org
Math100 said:
Homework Statement:: For ## n\geq 1 ##, show that ## (-13)^{n+1}\equiv (-13)^{n}+(-13)^{n-1}\pmod {181} ##.
[Hint: Notice that ## (-13)^{2}\equiv -13+1\pmod {181} ##; use induction on ## n ##.]
Relevant Equations:: None.

Proof:
Almost.

There were back slashes missing at begin and end commands. I inserted them.

Math100 said:
The proof is by induction.
(1) When ## n=1 ##, the statement is ## (-13)^{1+1}\equiv (-13)^{1}+(-13)^{1-1}\pmod {181}\implies 169\equiv -12\pmod {181} ##, which is true.
(2) Now assume the statement is true for some integer ## n=k\geq 1 ##, that is assume ## (-13)^{k+1}\equiv (-13)^{k}+(-13)^{k-1}\pmod {181} ##. Next, we will show that the statement for ## n=k+1 ## is true.
Simply erase the next paragraph. This looks as if you used the statement which has to be shown. So either you say "We must show that ..." instead of "observe" or better: drop it.
Math100 said:
Observe that
\begin{align*}
(-13)^{(k+1)+1} &\equiv [(-13)^{k+1}+(-13)^{(k+1)-1}]\pmod{181}\\
&\implies (-13)^{k+2}\equiv [(-13)^{k+1}+(-13)^{k}] \pmod{181}.
\end{align*}

This now is the actual proof: (##(-13)^{k+2}## + definition LHS + induction hypothesis + algebra = RHS)

Math100 said:
Thus

\begin{align*}
(-13)^{k+2}&\equiv (-13)(-13)^{k+1}\\
&\equiv (-13)[(-13)^{k}+(-13)^{k-1}]\pmod {181}\\
&\equiv [(-13)^{k+1}+(-13)^{k}]\pmod {181}.
\end{align*}
This establishes ## (-13)^{k+2}\equiv [(-13)^{k+1}+(-13)^{k}]\pmod {181} ##, which implies that the statement is true for ## n=k+1 ##.
The proof by induction is complete.
Therefore, ## (-13)^{n+1}\equiv (-13)^{n}+(-13)^{n-1}\pmod {181} ## for ## n\geq 1 ##.
 
The working out suggests first equating ## \sqrt{i} = x + iy ## and suggests that squaring and equating real and imaginary parts of both sides results in ## \sqrt{i} = \pm (1+i)/ \sqrt{2} ## Squaring both sides results in: $$ i = (x + iy)^2 $$ $$ i = x^2 + 2ixy -y^2 $$ equating real parts gives $$ x^2 - y^2 = 0 $$ $$ (x+y)(x-y) = 0 $$ $$ x = \pm y $$ equating imaginary parts gives: $$ i = 2ixy $$ $$ 2xy = 1 $$ I'm not really sure how to proceed from here.