MHB Show that limit is equal to zero

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Limit Zero
Click For Summary
The discussion focuses on proving that the limit of the integral of a specific function E over the boundary of a ball approaches zero as epsilon approaches zero. The function E is defined differently based on the dimension n, with specific forms for n ≥ 3 and n = 2. The participants derive that the integral can be expressed in terms of epsilon and show that it tends to zero as epsilon decreases. They confirm that the supremum of E and the bounded nature of the function f allows them to conclude that the limit of the integral also approaches zero. The conversation emphasizes the importance of correctly applying spherical or polar coordinates in the calculations.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)Suppose that $B_{\epsilon}=\{ |x- \xi|< \epsilon\}$ and $E(|x- \xi|)=\left\{\begin{matrix}
\frac{1}{(2-n)w_n}|x-\xi|^{2-n} &, n \geq 3 \\ \\
\frac{1}{2 \pi} \ln{|x-\xi|} &, n=2
\end{matrix}\right.$

So when $ |x- \xi|=\epsilon $ then

$$E(|x- \xi|)=\left\{\begin{matrix}
\frac{1}{(2-n)w_n}\epsilon^{2-n} &, n \geq 3 \\ \\
\frac{1}{2 \pi} \ln{\epsilon} &, n=2
\end{matrix}\right.$$I want to show that $\lim_{\epsilon \to 0} \int_{\partial{B_{\epsilon}}} E(|x- \xi|) f(\xi)ds=0$ for any continuous and bounded $f$.

There is a hint that we should check the integral $\int_{|x|=\epsilon} E(|x|) ds=0$ by using spherical $(n \geq 3)$ or polar $(n=2)$ coordinates.So, suppose that $n \geq 3$.

Then I thought the following:

$\int_{|x|=\epsilon} E(|x|) ds=\int_{|x|=\epsilon} \frac{1}{(2-n) w_n} |x|^{2-n} ds=\frac{1}{(2-n) w_n} \int_{|x|=\epsilon} |x|^{2-n} ds=\frac{1}{(2-n) w_n} \int_{|x|=\epsilon} \epsilon^{2-n} ds=\frac{\epsilon^{2-n}}{(2-n) w_n} 2 \pi \epsilon^{n-1}=\frac{2 \pi \epsilon}{(2-n) w_n} \to 0 \text{ while } \epsilon \to 0$.

But I didn't use spherical coordinates. Have I done something wrong? (Thinking)
 
Physics news on Phys.org
evinda said:
So, suppose that $n \geq 3$.

Then I thought the following:

$\int_{|x|=\epsilon} E(|x|) ds=\int_{|x|=\epsilon} \frac{1}{(2-n) w_n} |x|^{2-n} ds=\frac{1}{(2-n) w_n} \int_{|x|=\epsilon} |x|^{2-n} ds=\frac{1}{(2-n) w_n} \int_{|x|=\epsilon} \epsilon^{2-n} ds=\frac{\epsilon^{2-n}}{(2-n) w_n} 2 \pi \epsilon^{n-1}=\frac{2 \pi \epsilon}{(2-n) w_n} \to 0 \text{ while } \epsilon \to 0$.

But I didn't use spherical coordinates. Have I done something wrong? (Thinking)

Hey evinda!

Well... there is something wrong... :eek:

It should be:
$$\frac{1}{(2-n) w_n} \int_{|x|=\epsilon} \epsilon^{2-n} ds=\frac{\epsilon^{2-n}}{(2-n) w_n} w_n \epsilon^{n-1}$$
Otherwise I think it's all good! (Happy)
 
I see... So like that we show that $\lim_{\epsilon \to 0} \int_{|x|=\epsilon} E(|x|) ds=0$.

How do we use this in order to calculate the limit $\lim_{\epsilon \to 0} \int_{\partial{B_{\epsilon}}} E(|x-\xi|) f(\xi) ds$ ?
 
evinda said:
I see... So like that we show that $\lim_{\epsilon \to 0} \int_{|x|=\epsilon} E(|x|) ds=0$.

How do we use this in order to calculate the limit $\lim_{\epsilon \to 0} \int_{\partial{B_{\epsilon}}} E(|x-\xi|) f(\xi) ds$ ?

We have:
$$0 \le \left| \int_{\partial{B_{\epsilon}(x)}} E(|x-\xi|) f(\xi) ds \right| \le \sup_{\xi\in \partial B_\epsilon(x)} |E(|x-\xi|) | \cdot \sup_{\xi\in \partial B_\epsilon(x)} |f(\xi)| \cdot \int_{\partial{B_{\epsilon}(x)}} ds
$$
don't we? (Wondering)
 
I like Serena said:
We have:
$$0 \le \left| \int_{\partial{B_{\epsilon}(x)}} E(|x-\xi|) f(\xi) ds \right| \le \sup_{\xi\in \partial B_\epsilon(x)} |E(|x-\xi|) | \cdot \sup_{\xi\in \partial B_\epsilon(x)} |f(\xi)| \cdot \int_{\partial{B_{\epsilon}(x)}} ds
$$
don't we? (Wondering)

Yes. So don't we use the fact that $\lim_{\epsilon \to 0} \int_{|x|=\epsilon} E(|x|) ds=0$ ?

When $\xi \in \partial{B_{\epsilon}(x)}$ do we have that $|x-\xi|=\epsilon$ ?

If so then $\sup_{\xi \in \partial{B_{\epsilon}(x)}} |E(|x-\xi|)|=\frac{1}{(2-n) w_n} \epsilon^{2-n}$ and $\int_{\partial{B_{\epsilon}(x)}} ds=w_n \epsilon^{n-1}$ . Right?
 
evinda said:
Yes. So don't we use the fact that $\lim_{\epsilon \to 0} \int_{|x|=\epsilon} E(|x|) ds=0$ ?

When $\xi \in \partial{B_{\epsilon}(x)}$ do we have that $|x-\xi|=\epsilon$ ?

If so then $\sup_{\xi \in \partial{B_{\epsilon}(x)}} |E(|x-\xi|)|=\frac{1}{(2-n) w_n} \epsilon^{2-n}$ and $\int_{\partial{B_{\epsilon}(x)}} ds=w_n \epsilon^{n-1}$ . Right?

Right! (Nod)

And $f$ is given to be bounded, so $\displaystyle\sup_{\xi \in \partial{B_{\epsilon}(x)}} |f(\xi)| = M$ for some $M$.
 
Nice... Thank you! (Smile)
 

Similar threads

Replies
17
Views
6K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 2 ·
Replies
2
Views
753
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 18 ·
Replies
18
Views
4K
Replies
8
Views
4K
  • · Replies 7 ·
Replies
7
Views
1K