Show that limit is equal to zero

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Limit Zero
Click For Summary
SUMMARY

This discussion focuses on demonstrating that the limit of the integral $\lim_{\epsilon \to 0} \int_{\partial{B_{\epsilon}}} E(|x-\xi|) f(\xi) ds$ equals zero for any continuous and bounded function $f$. The integral $E(|x-\xi|)$ is defined piecewise based on the dimension $n$, with specific forms for $n \geq 3$ and $n = 2$. The participants confirm that using spherical coordinates for $n \geq 3$ is unnecessary, as the limit can be shown to approach zero through direct evaluation of the integral, confirming the correctness of the approach.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with integrals in multiple dimensions
  • Knowledge of spherical and polar coordinates
  • Concept of bounded functions in mathematical analysis
NEXT STEPS
  • Study the properties of Lebesgue integrals in higher dimensions
  • Learn about the implications of the Dominated Convergence Theorem
  • Explore the use of spherical coordinates in multivariable calculus
  • Investigate the behavior of integrals involving continuous functions over bounded domains
USEFUL FOR

Mathematicians, calculus students, and researchers in analysis who are working with limits and integrals in multiple dimensions, particularly those interested in the behavior of integrals involving continuous and bounded functions.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)Suppose that $B_{\epsilon}=\{ |x- \xi|< \epsilon\}$ and $E(|x- \xi|)=\left\{\begin{matrix}
\frac{1}{(2-n)w_n}|x-\xi|^{2-n} &, n \geq 3 \\ \\
\frac{1}{2 \pi} \ln{|x-\xi|} &, n=2
\end{matrix}\right.$

So when $ |x- \xi|=\epsilon $ then

$$E(|x- \xi|)=\left\{\begin{matrix}
\frac{1}{(2-n)w_n}\epsilon^{2-n} &, n \geq 3 \\ \\
\frac{1}{2 \pi} \ln{\epsilon} &, n=2
\end{matrix}\right.$$I want to show that $\lim_{\epsilon \to 0} \int_{\partial{B_{\epsilon}}} E(|x- \xi|) f(\xi)ds=0$ for any continuous and bounded $f$.

There is a hint that we should check the integral $\int_{|x|=\epsilon} E(|x|) ds=0$ by using spherical $(n \geq 3)$ or polar $(n=2)$ coordinates.So, suppose that $n \geq 3$.

Then I thought the following:

$\int_{|x|=\epsilon} E(|x|) ds=\int_{|x|=\epsilon} \frac{1}{(2-n) w_n} |x|^{2-n} ds=\frac{1}{(2-n) w_n} \int_{|x|=\epsilon} |x|^{2-n} ds=\frac{1}{(2-n) w_n} \int_{|x|=\epsilon} \epsilon^{2-n} ds=\frac{\epsilon^{2-n}}{(2-n) w_n} 2 \pi \epsilon^{n-1}=\frac{2 \pi \epsilon}{(2-n) w_n} \to 0 \text{ while } \epsilon \to 0$.

But I didn't use spherical coordinates. Have I done something wrong? (Thinking)
 
Physics news on Phys.org
evinda said:
So, suppose that $n \geq 3$.

Then I thought the following:

$\int_{|x|=\epsilon} E(|x|) ds=\int_{|x|=\epsilon} \frac{1}{(2-n) w_n} |x|^{2-n} ds=\frac{1}{(2-n) w_n} \int_{|x|=\epsilon} |x|^{2-n} ds=\frac{1}{(2-n) w_n} \int_{|x|=\epsilon} \epsilon^{2-n} ds=\frac{\epsilon^{2-n}}{(2-n) w_n} 2 \pi \epsilon^{n-1}=\frac{2 \pi \epsilon}{(2-n) w_n} \to 0 \text{ while } \epsilon \to 0$.

But I didn't use spherical coordinates. Have I done something wrong? (Thinking)

Hey evinda!

Well... there is something wrong... :eek:

It should be:
$$\frac{1}{(2-n) w_n} \int_{|x|=\epsilon} \epsilon^{2-n} ds=\frac{\epsilon^{2-n}}{(2-n) w_n} w_n \epsilon^{n-1}$$
Otherwise I think it's all good! (Happy)
 
I see... So like that we show that $\lim_{\epsilon \to 0} \int_{|x|=\epsilon} E(|x|) ds=0$.

How do we use this in order to calculate the limit $\lim_{\epsilon \to 0} \int_{\partial{B_{\epsilon}}} E(|x-\xi|) f(\xi) ds$ ?
 
evinda said:
I see... So like that we show that $\lim_{\epsilon \to 0} \int_{|x|=\epsilon} E(|x|) ds=0$.

How do we use this in order to calculate the limit $\lim_{\epsilon \to 0} \int_{\partial{B_{\epsilon}}} E(|x-\xi|) f(\xi) ds$ ?

We have:
$$0 \le \left| \int_{\partial{B_{\epsilon}(x)}} E(|x-\xi|) f(\xi) ds \right| \le \sup_{\xi\in \partial B_\epsilon(x)} |E(|x-\xi|) | \cdot \sup_{\xi\in \partial B_\epsilon(x)} |f(\xi)| \cdot \int_{\partial{B_{\epsilon}(x)}} ds
$$
don't we? (Wondering)
 
I like Serena said:
We have:
$$0 \le \left| \int_{\partial{B_{\epsilon}(x)}} E(|x-\xi|) f(\xi) ds \right| \le \sup_{\xi\in \partial B_\epsilon(x)} |E(|x-\xi|) | \cdot \sup_{\xi\in \partial B_\epsilon(x)} |f(\xi)| \cdot \int_{\partial{B_{\epsilon}(x)}} ds
$$
don't we? (Wondering)

Yes. So don't we use the fact that $\lim_{\epsilon \to 0} \int_{|x|=\epsilon} E(|x|) ds=0$ ?

When $\xi \in \partial{B_{\epsilon}(x)}$ do we have that $|x-\xi|=\epsilon$ ?

If so then $\sup_{\xi \in \partial{B_{\epsilon}(x)}} |E(|x-\xi|)|=\frac{1}{(2-n) w_n} \epsilon^{2-n}$ and $\int_{\partial{B_{\epsilon}(x)}} ds=w_n \epsilon^{n-1}$ . Right?
 
evinda said:
Yes. So don't we use the fact that $\lim_{\epsilon \to 0} \int_{|x|=\epsilon} E(|x|) ds=0$ ?

When $\xi \in \partial{B_{\epsilon}(x)}$ do we have that $|x-\xi|=\epsilon$ ?

If so then $\sup_{\xi \in \partial{B_{\epsilon}(x)}} |E(|x-\xi|)|=\frac{1}{(2-n) w_n} \epsilon^{2-n}$ and $\int_{\partial{B_{\epsilon}(x)}} ds=w_n \epsilon^{n-1}$ . Right?

Right! (Nod)

And $f$ is given to be bounded, so $\displaystyle\sup_{\xi \in \partial{B_{\epsilon}(x)}} |f(\xi)| = M$ for some $M$.
 
Nice... Thank you! (Smile)
 

Similar threads

Replies
17
Views
6K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 2 ·
Replies
2
Views
994
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 18 ·
Replies
18
Views
4K
Replies
8
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K