MHB Soln of IVP: $y = \frac{e^x + 1 - e}{x}, \space x>0$

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    E^x
Click For Summary
The initial value problem is solved by first rewriting the differential equation and finding the integrating factor, which is x. After integrating, the general solution is expressed as y = (e^x/x) + (c/x). The constant c is determined using the initial condition y(1) = 1, leading to the specific solution y = (e^x + 1 - e)/x. The solution is valid for x > 0, as indicated in the problem statement.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{ Find the solution of the given initial value problem.}$
$$xy^\prime+y=e^x, \qquad y(1)=1$$
$$\begin{array}{lrll}
\textit{Divide thru with x}\\
&\displaystyle y' +\frac{1}{x}y
&\displaystyle=\,\frac{e^x}{x} &_{(1)}\\
\textit {Find u(x)}\\
&\displaystyle u(x)
&\displaystyle=\exp\int\frac{1}{x}\,dx\\
&&=e^{\ln {x}}\\
&&=x &_{(2)}\\
\textit{Multiply thru with $x$} \\
&(xy)' +x'y&=e^x &_{(3)}\\
\textit{Rewrite:}\\
&(xy)'&=e^x &_{(4)}\\
\textit{Integrate }\\
&\displaystyle xy
&=\displaystyle\int e^x \, dx\\
&&=\displaystyle e^x+c &_{(5)}\\
\textit{Divide thru by $x$}\\
&\displaystyle y&=\displaystyle\frac{e^x}{x}+\frac{c}{e^x} &_{(6)}\\
\textit{So then if }\\
&\displaystyle y(1)&\displaystyle=e+\frac{c}{e}=1 &_{(7)}\\
\textit{with $c=?$ then }\\
&\displaystyle y
&=\color{red}{\displaystyle\frac{1}{x}(e^x + 1 - e)} &_{(8)}\\
\end{array}$$

ok (8) is the book answer but ? what wuld be c?
$\textit{State the interval in which the solution is valid. ?}\\$
 
Physics news on Phys.org
Towards the end, when you divide through by $x$, you want:

$$y(x)=\frac{e^x}{x}+\frac{c}{x}$$

You mistakenly divided the constant by $e^x$.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K