Solution for equation of 2,3,4, degree

  • Context: Graduate 
  • Thread starter Thread starter Jhenrique
  • Start date Start date
  • Tags Tags
    Degree
Click For Summary
SUMMARY

This discussion focuses on the methodology for finding the roots of polynomial equations of degrees two, three, four, and five by transforming them into specific forms. The transformation involves expressing cubic, quartic, and quintic functions in terms of a new variable, λ, and constants u and v. The derived equations allow for the calculation of roots using the formula x = √[3]{d/a - (2b^3)/(3^3a^3) - (bc)/(3a^2)} - (b/3a). The conclusion asserts the validity of this approach for solving polynomial equations.

PREREQUISITES
  • Understanding of polynomial equations and their degrees
  • Familiarity with algebraic transformations and substitutions
  • Knowledge of cubic and quartic root calculations
  • Basic grasp of matrix representation in polynomial equations
NEXT STEPS
  • Study the derivation of roots for cubic functions using the Cardano's method
  • Explore quartic equation solutions through Ferrari's method
  • Learn about numerical methods for approximating roots of higher-degree polynomials
  • Investigate the implications of polynomial transformations in computational mathematics
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in advanced polynomial root-finding techniques.

Jhenrique
Messages
676
Reaction score
4
I noticed that is always possible to find the roots of polynomials of kind:
##A\lambda^2 + B##
##A\lambda^3 + B##
##A\lambda^4 + B##
##A\lambda^5 + B##

So I thought to transform the quadratic, the cubic, the quartic and the quintic function in the forms above, look:

##ax^3+bx^2+cx+d=0##

##(x=\lambda+u+v)##

##a(\lambda+u+v)^3+b(\lambda+u+v)^2+c(\lambda+u+v)+d=0##

##\\a \left ( \begin{matrix}
\lambda^3 & +3\lambda^2u & +3\lambda u^2 & +u^3\\
+3\lambda^2v & +6\lambda u v & +3u^2 v & \\
+3\lambda v^2 & +3uv^2 & & \\
+v^3 & & & \\
\end{matrix} \right )

+ b \left ( \begin{matrix}
\lambda^2 & +2\lambda u & +u^2\\
+2\lambda v & +2 u v & \\
+v^2 & &
\end{matrix} \right )

+ c (\lambda + u + v) + d = 0##

##a\lambda^3+(3a(u+v)+b)\lambda^2+(3a(u+v)^2 + 2b(u+v) + c)\lambda + (a(u+v)^3 + b(u+v)^2 + c(u+v) + d) = 0##

So, comparing the equations:

##A\lambda^3 + B = a\lambda^3+(3a(u+v)+b)\lambda^2+(3a(u+v)^2 + 2b(u+v) + c)\lambda + (a(u+v)^3 + b(u+v)^2 + c(u+v) + d) = 0##

implies that:
##\begin{cases}
A=a\\
0=(3a(u+v)+b)\\
0=(3a(u+v)^2 + 2b(u+v) + c)\\
B=(a(u+v)^3 + b(u+v)^2 + c(u+v) + d)\\
\end{cases}##

So,
##A\lambda^3 + B = 0\;\;\;\Rightarrow\;\;\;\;\lambda = \sqrt[3]{\frac{-B}{A}} \;\;\;\Rightarrow\;\;\;\; x-u-v = \sqrt[3]{\frac{-B}{A}} \;\;\;\Rightarrow\;\;\;\; x = \sqrt[3]{\frac{-B}{A}} + (u+v)\;\;\;\Rightarrow\;\;\;\; x = \sqrt[3]{\frac{-(a(u+v)^3 + b(u+v)^2 + c(u+v) + d)}{a}} + (u+v)##

Happens that
##0=3a(u+v)+b\;\;\;\Rightarrow\;\;\;\;u+v = \frac{-b}{3a}##

Conclusion:
x=\sqrt[3]{\frac{d}{a}-\frac{2b^3}{3^3a^3}-\frac{bc}{3a^2}}-\frac{b}{3a}

This ideia is correct?
 
Physics news on Phys.org

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
6
Views
2K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
1K
Replies
2
Views
5K