MHB Solve Bartlett's Formula: Example 2.4.2 | Get Expert Help

  • Thread starter Thread starter nacho-man
  • Start date Start date
  • Tags Tags
    Formula
AI Thread Summary
The discussion centers on computing the (i,j) element of the covariance matrix W using Bartlett's formula, specifically Example 2.4.2. A user seeks clarification on how to apply the formula 2.4.10 to derive the result for w_{ij}. It is explained that due to the properties of the correlation function ρ(h), which is zero for almost all h except at h=0, many terms in the formula simplify to zero. Consequently, the final result shows that w_{ij} equals 1 when i equals j and 0 otherwise. This clarification resolves the user's confusion about the inputs for the formula.
nacho-man
Messages
166
Reaction score
0
Hi,
Just having some difficulty computing the example (i,j) element of the cov matrix W here from the given formula.

Could anyone provide some guidance?
I have attached the example question (example 2.4.2) and also the supporting equation previous from it.

Any assistance is greatly appreciated.

Thanks!
 

Attachments

  • relevant.jpg
    relevant.jpg
    29.4 KB · Views: 95
  • example.jpg
    example.jpg
    22.7 KB · Views: 86
Physics news on Phys.org
Hi nacho,

I will start with I probably can't help you but am interested in this question as well. Last semester I took a course on Time Series and I think that's what you are doing as well. The theory can be difficult at times.

In your post though I don't see any actual problem to solve. I see the two formulas for an infinite sum to calculate $w_{ij}$ and some text in the second picture, but nothing that looks like a question. Can you explain a bit more please what you are trying to do?
 
Thanks for replying Jameson.

in particular, i am trying to find out how they did the example 2.4.2.

They worked out $w_{ij}$ using (2.4.10) but I am not entirely sure what the inputs for the formula are.
 
nacho said:
Hi,
Just having some difficulty computing the example (i,j) element of the cov matrix W here from the given formula.

Could anyone provide some guidance?
I have attached the example question (example 2.4.2) and also the supporting equation previous from it.

Any assistance is greatly appreciated.

Thanks!
I know nothing about Bartlett's formula, but I can tell you how to get 2.4.2 from 2.4.10. The formula 2.4.10 says $$w_{ij} = \sum_{k=-\infty}^\infty \{\rho(k+i) + \rho(k-i) -2\rho(i)\rho(k)\} \times \{\rho(k+j) + \rho(k-j) -2\rho(j)\rho(k)\}.$$ In Example 2.4.2 you are told that $\rho(h)=0$ for almost all values of $h$. In fact, the only value of $h$ for which $\rho(h)\ne0$ is $h=0$, and in that case $\rho(0) = 1$. All the terms on the right side of 2.4.10 involve values of $\rho$, so you can put them all equal to $0$ unless they might be equal to $\rho(0).$ So in the expression $\rho(k+i) + \rho(k-i) -2\rho(i)\rho(k)$, the terms $\rho(k+i)$ and $2\rho(i)\rho(k)$ will always be zero, and the only term that can survive is $\rho(k-i)$ (which will be nonzero when $k=i$). The same argument applies to the other expression in the formula 2.4.10, namely $\rho(k+j) + \rho(k-j) -2\rho(j)\rho(k)$, which reduces to $\rho(k-j).$ Thus 2.4.10 becomes $$w_{ij} = \sum_{k=-\infty}^\infty \rho(k-i)\rho(k-j).$$ In that infinite sum, all the terms will again be zero (because either $k-i$ or $k-j$ will be nonzero), unless $i=j$, in which case there is one nonzero term (when $k=j$). Therefore $w_{ij}=0$ unless $i=j$ in which case $w_{ij}=1.$
 
Opalg said:
I know nothing about Bartlett's formula, but I can tell you how to get 2.4.2 from 2.4.10. The formula 2.4.10 says $$w_{ij} = \sum_{k=-\infty}^\infty \{\rho(k+i) + \rho(k-i) -2\rho(i)\rho(k)\} \times \{\rho(k+j) + \rho(k-j) -2\rho(j)\rho(k)\}.$$ In Example 2.4.2 you are told that $\rho(h)=0$ for almost all values of $h$. In fact, the only value of $h$ for which $\rho(h)\ne0$ is $h=0$, and in that case $\rho(0) = 1$. All the terms on the right side of 2.4.10 involve values of $\rho$, so you can put them all equal to $0$ unless they might be equal to $\rho(0).$ So in the expression $\rho(k+i) + \rho(k-i) -2\rho(i)\rho(k)$, the terms $\rho(k+i)$ and $2\rho(i)\rho(k)$ will always be zero, and the only term that can survive is $\rho(k-i)$ (which will be nonzero when $k=i$). The same argument applies to the other expression in the formula 2.4.10, namely $\rho(k+j) + \rho(k-j) -2\rho(j)\rho(k)$, which reduces to $\rho(k-j).$ Thus 2.4.10 becomes $$w_{ij} = \sum_{k=-\infty}^\infty \rho(k-i)\rho(k-j).$$ In that infinite sum, all the terms will again be zero (because either $k-i$ or $k-j$ will be nonzero), unless $i=j$, in which case there is one nonzero term (when $k=j$). Therefore $w_{ij}=0$ unless $i=j$ in which case $w_{ij}=1.$
precisely what I needed, thank you! that makes complete sense, I just couldn't recognise that the k's, i's and j's were just referring to h
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...
Back
Top