MHB Solve Recurrence Equation w/2 Base Cases Same Result

  • Thread starter Thread starter ATroelstein
  • Start date Start date
  • Tags Tags
    Base Recurrence
ATroelstein
Messages
15
Reaction score
0
This question is related to the question that I have asked here, although the equation is ever so slightly different:
http://www.mathhelpboards.com/f15/solving-specific-variable-when-solving-recurrence-equation-3804/

I have a recurrence equation of the form
$$
T(n) = 0, n = 0, n = 1\\ T(n) = T(\frac{(n-1)}{2}) + 2, n > 1
$$

By unrolling the equation, I get (thanks to I like Serena's help :)):

$$
T(n) = T\left(\frac{n-2^k+1}{2^k}\right) + 2k
$$

Now if I solve for k when
$$
\frac{n-2^k+1}{2^k} = 0
$$

I get
$$
k = log(n+1) - 1
$$

Substituting this back in
$$
T(n) = T(1) + 2*(log(n+1) - 1)\\
T(n) = 2*(log(n+1) - 1)
$$

Now if I wanted to prove my closed form is correct, I have to use induction. I can prove the base case of T(n) = 0 when n = 1. The problem results when I want to also show that the other base case of T(n) = 0 when n = 0. I ran through the full inductive proof and was able to show my closed form is correct, except that lingering base case of 0. How would I go about solving the equation so that I also take into consideration that base case as well? Thanks.
 
Physics news on Phys.org
Hi ATroelstein! :)

When we fill in n=1 in your recurrence relation $T(n) = T(\frac{n-1}{2}) + 2$, we get:
$$T(1) = T(\frac{1-1}{2}) + 2 = T(0)+2=0+2 \ne 0$$
So your boundary conditions for $n=0$ and $n=1$ cannot both be consistent with the recurrence relation for $n \ge 2$.
In other words, there is no solution with just one simple formula.

The solution you would be looking for, is for instance:
$$
T(n) = \left\{\begin{array}{ll}
0 \quad &\text{ if } n=0 \\
2(\log_2(n+1) - 1) \quad &\text{ if } n \ge 1 \\
\end{array}\right.
$$
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top