MHB Solve Recurrence Equation w/2 Base Cases Same Result

  • Thread starter Thread starter ATroelstein
  • Start date Start date
  • Tags Tags
    Base Recurrence
Click For Summary
The recurrence equation presented is T(n) = 0 for n = 0, n = 1, and T(n) = T((n-1)/2) + 2 for n > 1. Unrolling the equation leads to T(n) = T((n-2^k+1)/2^k) + 2k, with k solved as log(n+1) - 1. The closed form derived is T(n) = 2(log(n+1) - 1), but proving its correctness encounters issues with the base case T(0) = 0. It is concluded that the boundary conditions for n = 0 and n = 1 are inconsistent with the recurrence relation for n ≥ 2, suggesting the need for a piecewise solution.
ATroelstein
Messages
15
Reaction score
0
This question is related to the question that I have asked here, although the equation is ever so slightly different:
http://www.mathhelpboards.com/f15/solving-specific-variable-when-solving-recurrence-equation-3804/

I have a recurrence equation of the form
$$
T(n) = 0, n = 0, n = 1\\ T(n) = T(\frac{(n-1)}{2}) + 2, n > 1
$$

By unrolling the equation, I get (thanks to I like Serena's help :)):

$$
T(n) = T\left(\frac{n-2^k+1}{2^k}\right) + 2k
$$

Now if I solve for k when
$$
\frac{n-2^k+1}{2^k} = 0
$$

I get
$$
k = log(n+1) - 1
$$

Substituting this back in
$$
T(n) = T(1) + 2*(log(n+1) - 1)\\
T(n) = 2*(log(n+1) - 1)
$$

Now if I wanted to prove my closed form is correct, I have to use induction. I can prove the base case of T(n) = 0 when n = 1. The problem results when I want to also show that the other base case of T(n) = 0 when n = 0. I ran through the full inductive proof and was able to show my closed form is correct, except that lingering base case of 0. How would I go about solving the equation so that I also take into consideration that base case as well? Thanks.
 
Physics news on Phys.org
Hi ATroelstein! :)

When we fill in n=1 in your recurrence relation $T(n) = T(\frac{n-1}{2}) + 2$, we get:
$$T(1) = T(\frac{1-1}{2}) + 2 = T(0)+2=0+2 \ne 0$$
So your boundary conditions for $n=0$ and $n=1$ cannot both be consistent with the recurrence relation for $n \ge 2$.
In other words, there is no solution with just one simple formula.

The solution you would be looking for, is for instance:
$$
T(n) = \left\{\begin{array}{ll}
0 \quad &\text{ if } n=0 \\
2(\log_2(n+1) - 1) \quad &\text{ if } n \ge 1 \\
\end{array}\right.
$$
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
29
Views
4K
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K