MHB Solve Sigma 1/(k(k+1)): Step-by-Step Guide

  • Thread starter Thread starter ChelseaL
  • Start date Start date
  • Tags Tags
    Induction
Click For Summary
The discussion focuses on deriving the formula for the sum S_n = Σ(1/(k(k+1))) from k=1 to n. It begins by using the identity 1/k - 1/(k+1) to express the sum in terms of simpler fractions. The participants clarify the steps to isolate terms and correctly simplify the expression, ultimately arriving at S_n = 1 - 1/(n+1). A suggestion is made to use LaTeX for better readability of mathematical expressions. The final result is confirmed as S_n = n/(n+1), completing the derivation.
ChelseaL
Messages
22
Reaction score
0
Use the fact that \frac{1}{k} -\frac{1}{k+1} = \frac{1}{k(k+1)} to show that

n
sigma (\frac{1}{k(k+1)}) = 1-\frac{1}{n+1}
r=1

What do I need to do to solve it?
 
Physics news on Phys.org
What they want you to do is:

$$S_n=\sum_{k=1}^n\left(\frac{1}{k(k+1)}\right)=\sum_{k=1}^n\left(\frac{1}{k}\right)-\sum_{k=1}^n\left(\frac{1}{k+1}\right)=\sum_{k=1}^n\left(\frac{1}{k}\right)-\sum_{k=2}^{n+1}\left(\frac{1}{k}\right)$$

Now, take off the first term of the first sum, and the last term of the second sum like so:

$$S_n=1+\sum_{k=2}^n\left(\frac{1}{k}\right)-\sum_{k=2}^{n}\left(\frac{1}{k}\right)-\frac{1}{n+1}$$

What are you left with?
 
Sn = 1 + (1/n+1)?
 
ChelseaL said:
Sn = 1 + (1/n+1)?

To properly use bracketing, you want:

Sn = 1 + 1/(n+1)

I would highly recommend learning to use $\LaTeX$ to make your expressions more readable. :)

However, that is incorrect, as you've got the wrong sign in front of the second term. What you want is then:

$$S_n=1-\frac{1}{n+1}$$

This is what we've been asked to show. I would choose to write it this way though:

$$S_n=\frac{n}{n+1}$$
 
Thank you!
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

Replies
29
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
9
Views
3K
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K