Solve Sum of {30 \choose i} with Binomial Theorem

Click For Summary

Discussion Overview

The discussion revolves around finding the sum of the series $$\sum_{i=0}^{30} \frac{1}{i+1}{30 \choose i}$$ using the Binomial Theorem. Participants explore different methods to simplify or compute this sum, including integration techniques and sigma notation. The scope includes theoretical exploration and mathematical reasoning.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Technical explanation

Main Points Raised

  • One participant proposes to simplify the sum by rewriting $$\frac{1}{i+1}{30 \choose i}$$ and integrating the Binomial Theorem.
  • Another participant expresses uncertainty about how to express $$\frac{1}{1+i}$$ in the required form for the Binomial Theorem.
  • A third participant generalizes the problem to an arbitrary $$n$$ and provides a series of transformations using sigma notation and the definition of binomial coefficients.
  • Subsequent posts build on this by applying the Binomial Theorem and integrating, leading to a proposed formula for the sum involving powers of 2.
  • There is a discussion about determining the constant of integration when applying the Binomial Theorem through integration.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the methods or results, as multiple approaches and interpretations are presented, and some participants express confusion about specific steps.

Contextual Notes

Some participants' contributions depend on assumptions about the manipulation of series and integration techniques, which are not fully resolved. The discussion includes various mathematical transformations that may not be universally accepted or understood.

mathgirl1
Messages
21
Reaction score
0
Simplify (find the sum) of $${30 \choose 0} + \frac{1}{2}{30 \choose 1}+ \frac{1}{3}{30 \choose 2} + ... + \frac{1}{31}{30 \choose 30}$$.

Do this is two ways:
1. Write $$\frac{1}{i+1}{30 \choose i}$$ in a different way then add
2. Integrate the binomial thorem (don't forget the constant of integration)

I know the Bionomial Theorem is $$(x+y)^n = \sum_{k=0}^{n} {{n \choose k}x^ky^{n-k}}$$. So obviously I have y=1 and n=30 but I don't know how to convert $$\frac{1}{1+i}$$ into the form $$x^k$$or $$y^{n-k}$$ for all values of k. Can anyone help with this? I'm sure if I can figure out how to write it in the form I need then I can compute the sum using $$(x+y)^n$$ and then integrate this but need some help. Any help is much appreciated. Thank you!
 
Physics news on Phys.org
I know that $$x=(k+1)^{\frac{-1}{k}}$$ but I don't know how to use this to compute $$(x+y)^n$$ since x is in terms of k and not in terms of x. Help please! I am sure this should be simple but I am stuck
 
Let's look at the first part of the problem...and let's generalize by using $n$ instead of 30:

I think I would begin by writing the sum $S$ using sigma notation:

$$S=\sum_{k=0}^{n}\left(\frac{1}{k+1}{n \choose k}\right)$$

Now, if we use the definition:

$${n \choose r}\equiv\frac{n!}{r!(n-r)!)}$$

We may write:

$$S=\sum_{k=0}^{n}\left(\frac{1}{k+1}\cdot\frac{n!}{k!(n-k)!}\right)$$

And then:

$$S=\frac{1}{n+1}\sum_{k=0}^{n}\left(\frac{(n+1)!}{(k+1)!((n+1)-(k+1))!}\right)$$

And then:

$$S=\frac{1}{n+1}\sum_{k=1}^{n+1}\left(\frac{(n+1)!}{k!(((n+1)-k)!}\right)$$

And then:

$$S=\frac{1}{n+1}\left(\sum_{k=0}^{n+1}\left(\frac{(n+1)!}{k!((n+1)-k)!}\right)-1\right)$$

And then:

$$S=\frac{1}{n+1}\left(\sum_{k=0}^{n+1}\left({n+1 \choose k}\right)-1\right)$$

Can you continue by applying the binomial theorem?
 
To follow up, we have:

$$2^n=(1+1)^n=\sum_{k=0}^{n}\left({n \choose k}1^{n-k}1^{k}\right)=\sum_{k=0}^{n}\left({n \choose k}\right)$$

Thus, there results:

$$S=\frac{2^{n+1}-1}{n+1}$$

Now, if we begin with the binomial theorem:

$$(1+x)^n=\sum_{k=0}^{n}\left({n \choose k}x^{k}\right)$$

And then integrate both sides w.r.t $x$, we obtain:

$$\frac{(1+x)^{n+1}}{n+1}+C=\sum_{k=0}^{n}\left({n \choose k}\frac{x^{k+1}}{k+1}\right)$$

To solve for the constant of integration $C$, let's use $x=0$:

$$\frac{(1+0)^{n+1}}{n+1}+C=\sum_{k=0}^{n}\left({n \choose k}\frac{0^{k+1}}{k+1}\right)$$

And from this, we obtain:

$$C=-\frac{1}{n+1}$$

Hence:

$$\frac{(1+x)^{n+1}-1}{n+1}=\sum_{k=0}^{n}\left({n \choose k}\frac{x^{k+1}}{k+1}\right)$$

And then letting $x=1$, we have our result:

$$S=\frac{2^{n+1}-1}{n+1}$$
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
Replies
1
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K