mathgirl1
- 21
- 0
Simplify (find the sum) of $${30 \choose 0} + \frac{1}{2}{30 \choose 1}+ \frac{1}{3}{30 \choose 2} + ... + \frac{1}{31}{30 \choose 30}$$.
Do this is two ways:
1. Write $$\frac{1}{i+1}{30 \choose i}$$ in a different way then add
2. Integrate the binomial thorem (don't forget the constant of integration)
I know the Bionomial Theorem is $$(x+y)^n = \sum_{k=0}^{n} {{n \choose k}x^ky^{n-k}}$$. So obviously I have y=1 and n=30 but I don't know how to convert $$\frac{1}{1+i}$$ into the form $$x^k$$or $$y^{n-k}$$ for all values of k. Can anyone help with this? I'm sure if I can figure out how to write it in the form I need then I can compute the sum using $$(x+y)^n$$ and then integrate this but need some help. Any help is much appreciated. Thank you!
Do this is two ways:
1. Write $$\frac{1}{i+1}{30 \choose i}$$ in a different way then add
2. Integrate the binomial thorem (don't forget the constant of integration)
I know the Bionomial Theorem is $$(x+y)^n = \sum_{k=0}^{n} {{n \choose k}x^ky^{n-k}}$$. So obviously I have y=1 and n=30 but I don't know how to convert $$\frac{1}{1+i}$$ into the form $$x^k$$or $$y^{n-k}$$ for all values of k. Can anyone help with this? I'm sure if I can figure out how to write it in the form I need then I can compute the sum using $$(x+y)^n$$ and then integrate this but need some help. Any help is much appreciated. Thank you!