I Solving for Extrema of Proper Time Integral

  • I
  • Thread starter Thread starter Kashmir
  • Start date Start date
  • Tags Tags
    Proper time Time
Kashmir
Messages
466
Reaction score
74
The question is to extremize the proper time : ##\begin{aligned}\int d\tau=\int ( dt^{2}-dx^{2}\\ -dy^{2} \\ -dz^2)^{1/2} \end{aligned}##

I've studied calculus of variations somewhat and a can solve a similar problem which I found in the mathematical methods book the author Mary Boas. The way she solves a similar problem is shown below, however I can't use that method for my problem of extremising the proper time above.

I would like to get some help to solve the above integral similar to the way shown below :

Given a problem to find ##y## that makes the integral stationary ##
I=\int_{x_1}^{x_2} F\left(x, y, y^{\prime}\right) d x
##
where ##F## is a given function. The ##y(x)## which makes ##I## stationary is called an extremal whether ##I## is a maximum or minimum or neither. We consider a set of varied curves ##
Y(x)=y(x)+\epsilon \eta(x)
##
just as before. Then we have
##
I(\epsilon)=\int_{x_1}^{x_2} F\left(x, Y, Y^{\prime}\right) d x,
##
and we want ##(d / d \epsilon) I(\epsilon)=0## when ##\epsilon=0##. Remembering that ##Y##and ##Y^{\prime}## are functions of ##\epsilon##, and differentiating under the integral sign with respect to ##\epsilon##, we get
##
\frac{d I}{d \epsilon}=\int_{x_1}^{x_2}\left(\frac{\partial F}{\partial Y} \frac{d Y}{d \epsilon}+\frac{\partial F}{\partial Y^{\prime}} \frac{d Y^{\prime}}{d \epsilon}\right) d x .
##

Substituting (2.1) and (2.5) into (2.11), we have
##\frac{d I}{d \epsilon}=\int_{x_1}^{x_2}\left[\frac{\partial F}{\partial Y} \eta(x)+\frac{\partial F}{\partial Y^{\prime}} \eta^{\prime}(x)\right] d x ##
We want ##d I / d \epsilon=0## at ##\epsilon=0##; recall that ##\epsilon=0## means ##Y=y## Then (2.12) gives
##\left(\frac{d I}{d \epsilon}\right)_{\epsilon=0}=\int_{x_1}^{x_2}\left[\frac{\partial F}{\partial y} \eta(x)+\frac{\partial F}{\partial y^{\prime}} \eta^{\prime}(x)\right] d x=0 ##

Assuming that ##y^{\prime \prime}## is continuous, we can integrate the second term by parts just as in the straight-line problem:
##
\int_{x_1}^{x_2} \frac{\partial F}{\partial y^{\prime}} \eta^{\prime}(x) d x=\left.\frac{\partial F}{\partial y^{\prime}} \eta(x)\right|_{x_1} ^{x_2}-\int_{x_1}^{x_2} \frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right) \eta(x) d x .
##
The integrated term is zero as before because ##\eta(x)## is zero at ##x_1## and ##x_2####
\left(\frac{d I}{d \epsilon}\right)_{\epsilon=0}=\int_{x_1}^{x_2}\left[\frac{\partial F}{\partial y}-\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}\right] \eta(x) d x=0 .
##
since ##\eta(x)## is arbitrary, we must have
##
\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}-\frac{\partial F}{\partial y}=0 . \quad \text { Euler equation }
##
 
Physics news on Phys.org
You have to parametrize the worldline with an arbitrary parameter ##\lambda##. The Lagrangian then reads
$$L=\sqrt{\dot{x}^{\mu} \dot{x}^{\nu} \eta_{\mu \nu}},$$
where ##\dot{x}^{\mu}=\mathrm{d}_{\lambda} x^{\mu}##. The "canonical momenta" are
$$p_{\mu} = \partial_{\dot{x}^{\mu}} L = \frac{\dot{x}^{\mu}}{\sqrt{\dot{x}^{\rho} \dot{x}^{\sigma} \eta_{\rho \sigma}}}=\mathrm{d}_{\tau} x^{\mu}.$$
Then the Euler-Lagrange equations say
$$\dot{p}_{\mu} = 0.$$
Now
$$\dot{p}_{\mu} = (\mathrm{d}_{\lambda} \tau) \mathrm{d}_{\tau} p_{\mu}=0 \; \Rightarrow \; \mathrm{d}_{\tau} p_{\mu}=0 \; \Rightarrow \; \mathrm{d}_{\tau}^2 x^{\mu}=0 \; \Rightarrow \; x^{\mu}=p_{0}^{\mu} \tau + x_0^{\mu}$$
with ##p_0^{\mu}=\text{const}## and ##x_0^{\mu}=\text{const}##.
 
Can you please simplify it ? I can't understand the terminology.
 
Kashmir said:
Can you please simplify it ? I can't understand the terminology.
There's a proof of the Euler-Lagrange equations in the more general case in Neuenschwander's book Emmy Noether's Wonderful Theorem. We have a functional:
$$J = \int_a^b L(t, x^{\mu}, \dot x^{\mu}) \ dt$$The ##\{x^{\mu}(t)\}## that make ##J## extremal satisfy:
$$\frac{\partial L}{\partial x^{\mu}} = \frac{d}{dt}\bigg (\frac{\partial L}{\partial \dot x^{\mu}} \bigg )$$Hartle doesn't give a proof of this but obviously uses the result, e.g. in equations (5.56) and later.

Additionally for GR, of course, you have to take ##t = x^0## and use some dummy parameter ##\sigma##. So, you have something like:
$$\tau_{ab} = \int_a^b d\tau = \int_a^b\big [-g_{\alpha \beta}dx^{\alpha}dx^{\beta} \big]^{\frac 1 2}$$$$= \int_0^1\big [-g_{\alpha \beta}\frac{dx^{\alpha}}{d\sigma}\frac{dx^{\beta}}{d\sigma} \big]^{\frac 1 2} \ d\sigma$$Where, without loss of generality, I've assumed ##\sigma \in [0,1]##.

Note that we have $$L = \frac{d\tau}{d\sigma} = \big [-g_{\alpha \beta}\frac{dx^{\alpha}}{d\sigma}\frac{dx^{\beta}}{d\sigma} \big]^{\frac 1 2}$$And, if you have ##g_{\alpha \beta} = \eta_{\alpha \beta}##, then the Euler-Lagrange equations yield:$$\frac{d^2x^{\mu}}{d\tau^2} = 0$$which is equation (5.62) in my edition of Hartle.
 
PS The first few chapters of Neuenschwander's book (or equivalent) are almost essential prerequisites for GR (and, in fact, most advanced modern physics). The basic calculus of variations in Boas may leave too much of a gap.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...

Similar threads

Replies
2
Views
1K
Replies
1
Views
977
Replies
14
Views
1K
Replies
48
Views
5K
Replies
8
Views
2K
Replies
1
Views
892
Back
Top