I Solving for Extrema of Proper Time Integral

  • I
  • Thread starter Thread starter Kashmir
  • Start date Start date
  • Tags Tags
    Proper time Time
Kashmir
Messages
466
Reaction score
74
The question is to extremize the proper time : ##\begin{aligned}\int d\tau=\int ( dt^{2}-dx^{2}\\ -dy^{2} \\ -dz^2)^{1/2} \end{aligned}##

I've studied calculus of variations somewhat and a can solve a similar problem which I found in the mathematical methods book the author Mary Boas. The way she solves a similar problem is shown below, however I can't use that method for my problem of extremising the proper time above.

I would like to get some help to solve the above integral similar to the way shown below :

Given a problem to find ##y## that makes the integral stationary ##
I=\int_{x_1}^{x_2} F\left(x, y, y^{\prime}\right) d x
##
where ##F## is a given function. The ##y(x)## which makes ##I## stationary is called an extremal whether ##I## is a maximum or minimum or neither. We consider a set of varied curves ##
Y(x)=y(x)+\epsilon \eta(x)
##
just as before. Then we have
##
I(\epsilon)=\int_{x_1}^{x_2} F\left(x, Y, Y^{\prime}\right) d x,
##
and we want ##(d / d \epsilon) I(\epsilon)=0## when ##\epsilon=0##. Remembering that ##Y##and ##Y^{\prime}## are functions of ##\epsilon##, and differentiating under the integral sign with respect to ##\epsilon##, we get
##
\frac{d I}{d \epsilon}=\int_{x_1}^{x_2}\left(\frac{\partial F}{\partial Y} \frac{d Y}{d \epsilon}+\frac{\partial F}{\partial Y^{\prime}} \frac{d Y^{\prime}}{d \epsilon}\right) d x .
##

Substituting (2.1) and (2.5) into (2.11), we have
##\frac{d I}{d \epsilon}=\int_{x_1}^{x_2}\left[\frac{\partial F}{\partial Y} \eta(x)+\frac{\partial F}{\partial Y^{\prime}} \eta^{\prime}(x)\right] d x ##
We want ##d I / d \epsilon=0## at ##\epsilon=0##; recall that ##\epsilon=0## means ##Y=y## Then (2.12) gives
##\left(\frac{d I}{d \epsilon}\right)_{\epsilon=0}=\int_{x_1}^{x_2}\left[\frac{\partial F}{\partial y} \eta(x)+\frac{\partial F}{\partial y^{\prime}} \eta^{\prime}(x)\right] d x=0 ##

Assuming that ##y^{\prime \prime}## is continuous, we can integrate the second term by parts just as in the straight-line problem:
##
\int_{x_1}^{x_2} \frac{\partial F}{\partial y^{\prime}} \eta^{\prime}(x) d x=\left.\frac{\partial F}{\partial y^{\prime}} \eta(x)\right|_{x_1} ^{x_2}-\int_{x_1}^{x_2} \frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right) \eta(x) d x .
##
The integrated term is zero as before because ##\eta(x)## is zero at ##x_1## and ##x_2####
\left(\frac{d I}{d \epsilon}\right)_{\epsilon=0}=\int_{x_1}^{x_2}\left[\frac{\partial F}{\partial y}-\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}\right] \eta(x) d x=0 .
##
since ##\eta(x)## is arbitrary, we must have
##
\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}-\frac{\partial F}{\partial y}=0 . \quad \text { Euler equation }
##
 
Physics news on Phys.org
You have to parametrize the worldline with an arbitrary parameter ##\lambda##. The Lagrangian then reads
$$L=\sqrt{\dot{x}^{\mu} \dot{x}^{\nu} \eta_{\mu \nu}},$$
where ##\dot{x}^{\mu}=\mathrm{d}_{\lambda} x^{\mu}##. The "canonical momenta" are
$$p_{\mu} = \partial_{\dot{x}^{\mu}} L = \frac{\dot{x}^{\mu}}{\sqrt{\dot{x}^{\rho} \dot{x}^{\sigma} \eta_{\rho \sigma}}}=\mathrm{d}_{\tau} x^{\mu}.$$
Then the Euler-Lagrange equations say
$$\dot{p}_{\mu} = 0.$$
Now
$$\dot{p}_{\mu} = (\mathrm{d}_{\lambda} \tau) \mathrm{d}_{\tau} p_{\mu}=0 \; \Rightarrow \; \mathrm{d}_{\tau} p_{\mu}=0 \; \Rightarrow \; \mathrm{d}_{\tau}^2 x^{\mu}=0 \; \Rightarrow \; x^{\mu}=p_{0}^{\mu} \tau + x_0^{\mu}$$
with ##p_0^{\mu}=\text{const}## and ##x_0^{\mu}=\text{const}##.
 
Can you please simplify it ? I can't understand the terminology.
 
Kashmir said:
Can you please simplify it ? I can't understand the terminology.
There's a proof of the Euler-Lagrange equations in the more general case in Neuenschwander's book Emmy Noether's Wonderful Theorem. We have a functional:
$$J = \int_a^b L(t, x^{\mu}, \dot x^{\mu}) \ dt$$The ##\{x^{\mu}(t)\}## that make ##J## extremal satisfy:
$$\frac{\partial L}{\partial x^{\mu}} = \frac{d}{dt}\bigg (\frac{\partial L}{\partial \dot x^{\mu}} \bigg )$$Hartle doesn't give a proof of this but obviously uses the result, e.g. in equations (5.56) and later.

Additionally for GR, of course, you have to take ##t = x^0## and use some dummy parameter ##\sigma##. So, you have something like:
$$\tau_{ab} = \int_a^b d\tau = \int_a^b\big [-g_{\alpha \beta}dx^{\alpha}dx^{\beta} \big]^{\frac 1 2}$$$$= \int_0^1\big [-g_{\alpha \beta}\frac{dx^{\alpha}}{d\sigma}\frac{dx^{\beta}}{d\sigma} \big]^{\frac 1 2} \ d\sigma$$Where, without loss of generality, I've assumed ##\sigma \in [0,1]##.

Note that we have $$L = \frac{d\tau}{d\sigma} = \big [-g_{\alpha \beta}\frac{dx^{\alpha}}{d\sigma}\frac{dx^{\beta}}{d\sigma} \big]^{\frac 1 2}$$And, if you have ##g_{\alpha \beta} = \eta_{\alpha \beta}##, then the Euler-Lagrange equations yield:$$\frac{d^2x^{\mu}}{d\tau^2} = 0$$which is equation (5.62) in my edition of Hartle.
 
PS The first few chapters of Neuenschwander's book (or equivalent) are almost essential prerequisites for GR (and, in fact, most advanced modern physics). The basic calculus of variations in Boas may leave too much of a gap.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Replies
2
Views
977
Replies
1
Views
950
Replies
14
Views
1K
Replies
48
Views
5K
Replies
8
Views
2K
Replies
1
Views
852
Back
Top