- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{b.1.3.7}$
Solve IVP
$y''-y=0;\quad y_1(t)=e^t,\quad y_2(t)=\cosh{t}$
$\begin{array}{lll}
&\exp\left(\int \, dx\right)= e^x\\
& e^x(y''-y)=0\\
& e^x-e^x=0\\ \\
&y_1(x)=e^x\\
&(e^x)''-(e^x)=0\\
&(e^x)-(e^x)=0\\ \\
&y_2(x)=\cosh{x}\\
&(\cosh{x})''-(\cosh{x})=0\\
\end{array}$
ok there was no book answer so hopefully went in right direction so suggestions...:unsure:
Solve IVP
$y''-y=0;\quad y_1(t)=e^t,\quad y_2(t)=\cosh{t}$
$\begin{array}{lll}
&\exp\left(\int \, dx\right)= e^x\\
& e^x(y''-y)=0\\
& e^x-e^x=0\\ \\
&y_1(x)=e^x\\
&(e^x)''-(e^x)=0\\
&(e^x)-(e^x)=0\\ \\
&y_2(x)=\cosh{x}\\
&(\cosh{x})''-(\cosh{x})=0\\
\end{array}$
ok there was no book answer so hopefully went in right direction so suggestions...:unsure: