MHB Solving Linear Recurrence Relations

taya
Messages
1
Reaction score
0
Solve each of the following linear recurrence relations:
1. t(1)=1 t(2)=4
t(n) - 5t(n-1) + 6t (n-2)= 0 for n>1

2. a(n)=4a(n-1) - 4a (n-2)
with initial conditions a(0) = 4 and a(1)=12

3. t(1)=3 t(2)=3
t(n) + 2t (n-1) + t(n-2) = 0
 
Physics news on Phys.org
taya said:
1. t(1)=1 t(2)=4
t(n) - 5t(n-1) + 6t (n-2)= 0 for n>1
Rewrite this as [math]t_{n + 2} - 5t_{n + 1} + 6 t_n = 0[/math]. What is your characteristic equation?

-Dan
 
Hello and welcome to MHB, taya! :D

For future reference, we ask that no more than 2 questions be asked in the initial post of a thread.

In case you find repeated characteristic roots, what form will your general solution take?
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Replies
2
Views
1K
Replies
18
Views
2K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
5
Views
2K
Replies
32
Views
6K
Replies
13
Views
1K
Back
Top