I Spectroscopy: vibronic and rotational transitions

pisluca99
Messages
63
Reaction score
4
IMG_20230525_143940.jpg

IMG_20230525_143958.jpg

In spectroscopy, the highest peaks in the absorption spectrum are those that are associated with the most probable energy transitions in a molecule. The most probable transitions are those in which the best superposition between the wave function of the vibronic level of the fundamental state and the wave function of the vibronic level of the excited state in which the molecule arrives after absorbing radiation occurs: in the image this corresponds to the transition v'' = 0 --> v' = 2, so this transition is associated with the highest peak. However, this is an argument that applies only to vibronic transitions, but each vibrational level in turn has many rotational sublevels (J0, J1, J2, etc.) at which the molecule can arrive. That said, how do you figure out which rotational transition is the most probable, again within the second vibronic level of the excited state?
 
Last edited:
Physics news on Phys.org
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top