I Strange Hamiltonian of two particles on the surface of a sphere

Salmone
Messages
101
Reaction score
13
I have a problem with this Hamiltonian: two identical particles of mass ##m## and spin half are constrained to move on the surface of a sphere of radius ##R##. Their Hamiltonian is ##H=\frac{1}{2}mR^2(L_1^2+L_2^2+\frac{1}{2}L_1L_2+\frac{1}{2}S_1S_2)##. By introducing the two operators
##L=L_1+L_2## and ##S=S_1+S_2## I was able to rewrite the Hamiltonian as: ##H=\frac{1}{8}mR^2(3L_1^2+3L_2^2+L^2+S^2-\frac{3}{2}\hbar^2)## this looks to me very strange since the Hamiltonian for two spinless particles on the surface of a sphere is ##H=\frac{L_1^2+L_2^2}{2mR^2}## so how can this be the Hamiltonian of two particles on the surface of a sphere?

And how can I find the eigenvalues of this Hamiltonian? For the resolution I thought I can separate the Hamiltonian into four parts: ##H_1=\frac{3}{8}mR^2L_1^2##, ##H_2=\frac{3}{8}mR^2L_2^2##, ##H_3=\frac{3}{8}mR^2L^2##, ##H_4=\frac{1}{8}mr^2S^2-\frac{3}{16}\hbar^2mR^2## but still I don't know how to go on.
 
Physics news on Phys.org
Salmone said:
this looks to me very strange since the Hamiltonian for two spinless particles on the surface of a sphere is ##H=\frac{L_1^2+L_2^2}{2mR^2}## so how can this be the Hamiltonian of two particles on the surface of a sphere?
This Hamiltonian doesn't include any interaction between the particles. The other one clearly does.

Salmone said:
And how can I find the eigenvalues of this Hamiltonian? For the resolution I thought I can separate the Hamiltonian into four parts: ##H_1=\frac{3}{8}mR^2L_1^2##, ##H_2=\frac{3}{8}mR^2L_2^2##, ##H_3=\frac{3}{8}mR^2L^2##, ##H_4=\frac{1}{8}mr^2S^2-\frac{3}{16}\hbar^2mR^2## but still I don't know how to go on.
There are an infinite number of states, as ##l_1## and ##l_2## are unbounded. You can separate spin from orbital angular momentum, resulting in the usual singlet and triplet states. Then you can find orbital eigenstates for each value of ##L## starting at 0. Make sure that you only consider orbital + spin combinations that satisfy the Pauli principle.
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top