https://imgur.com/a/FuCPJLe(adsbygoogle = window.adsbygoogle || []).push({});

I am trying to attempt this problem, but I am wondering why exactly these are the two cases the problem is split into. I can understand the first case, since that lets us count elements and get a contradiction, but why is the second case there? In other words, why do these two cases exhaust all possibilities?

EDIT: Actually, I think that I see it now. Since the intersection of subgroups is a subgroup, by Lagrange we must have that the negation of two distinct Sylow 3-subgroups intersecting trivially is intersecting with 3 elements.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I The cases in proving that group of order 90 is not simple

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**