MHB To find the expectation of the greater of X and Y

  • Thread starter Thread starter Suvadip
  • Start date Start date
  • Tags Tags
    Expectation
Click For Summary
The discussion focuses on finding the expectation of the maximum of two correlated normal variables, X and Y, with zero means and unit variances. It confirms that the expectation of the greater of X and Y, denoted as max{X,Y}, is influenced by the correlation coefficient ρ. For independent variables (ρ = 0), the expectation is easily derived as 1/√π. However, when ρ is not zero, deriving the expectation becomes more complex, and a general formula exists for such cases. The conversation seeks clarity on whether a full derivation is needed and the context of the problem.
Suvadip
Messages
68
Reaction score
0
If $$(X, Y)$$ has the normal distribution in two dimensions with zero means and unit variances and correlation coefficient $$\rho$$, then to prove that the expectation of the greater of X and Y is $$\sqrt{(1-\rho)\pi}$$.

How to proceed with it? Help please.
 
Physics news on Phys.org
What exactly do you mean with the greater of $X$ and $Y$? I suppose $\max\{X,Y\}$?

When $(X,Y)$ has a bivariate normal distribution it follows that $X$ and $Y$ are normally distributed (in this case with zero means and unit variances). The correlation coefficient describes the dependency structure between $X$ and $Y$. If $X$ and $Y$ are independent, in other words $\rho = 0$, then it's not very difficult to derive that
$$\mathbb{E}[\max\{X,Y\}] = \frac{1}{\sqrt{\pi}}$$.

However when $\rho \neq 0$ then it's harder to derive an expression for the expectation but there's a general formula. So before I proceed I have three questions: Do you want a full derivation of the general formula? Where does this problem come from? What have you already tried?
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
4K
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K