Two coupled Sturm-Liouville Eigenvalue Problems in 2-D

In summary, the speaker is trying to solve coupled two eigenvalue problems in terms of two functions using Mathematica. They have tried different approaches, but have not been able to find a solution. They are looking for someone with expertise in differential equations to suggest a solution.
  • #1
Urkel
15
0
Hello everybody,
I have been trying to solve coupled two eigenvalue (Sturm-Liouville) problems in terms of two (eigen) functions u[x,y] and v[x,y].
I have been using Mathematica trying to solve the coupled equations analytically in their original form,
but the Mathematica doesn't seem to give th ecorrect result. Here are the equations in its general form;

La(u[x,y]) + Lb(v[x,y]) = Es u[x,y]
Lc(u[x,y]) + Ld(v[x,y]) = Es v[x,y]

where La,Lb,Lc,Ld are some differential operators which may contain x,y variables, their derivatives or just some constants.
The actual equations in Mathematica notations are as follows (I move the eigenvalues Es to the left hand side so as to make it
like a constant to be determined from boundary conditions)


DSolve[{-I*vf*D[u[x, y], x] + ec/c*vf*H*y*u[x, y] - Es*u[x, y] -
8*d0/(pf*pf)*D[D[v[x, y], y], y] ==
0, -8*d0/(pf*pf) D[D[u[x, y], y], y] +
I*vf*D[v[x, y], x] + (ec/c*vf*H*y - Es)*v[x, y] == 0}, {u[x, y],
v[x, y]}, {x, y}]

where variables other than x,y are constants. ('I' is the unit imaginary number).

The mathematica does give some output but doesn't seem to satisfy the original equations.
{{u[x, 0] ->
C[4] + C[5] Sech[x C[1] + C[3]] + C[6] Sech[x C[1] + C[3]]^2 +
C[10] Tanh[x C[1] + C[3]] +
C[11] Sech[x C[1] + C[3]] Tanh[x C[1] + C[3]],
v[x, 0] ->
C[7] + C[8] Sech[x C[1] + C[3]] + C[9] Sech[x C[1] + C[3]]^2 +
C[12] Tanh[x C[1] + C[3]] +
C[13] Sech[x C[1] + C[3]] Tanh[x C[1] + C[3]]},

{u[x, y] ->
C[4] + C[5] Sech[x C[1] + y C[2] + C[3]] +
C[6] Sech[x C[1] + y C[2] + C[3]]^2 +
C[10] Tanh[x C[1] + y C[2] + C[3]] +
C[11] Sech[x C[1] + y C[2] + C[3]] Tanh[x C[1] + y C[2] + C[3]],
v[x, y] ->
C[7] + C[8] Sech[x C[1] + y C[2] + C[3]] +
C[9] Sech[x C[1] + y C[2] + C[3]]^2 +
C[12] Tanh[x C[1] + y C[2] + C[3]] +
C[13] Sech[x C[1] + y C[2] + C[3]] Tanh[x C[1] + y C[2] + C[3]]}}

Not sure what the u[x,0] and v[x,0] mean but I know they are probably some sort of boundary conditions that are assumed/suggested by the Mathematica for the problem.
Well unfortunately I have not had the boundary conditions yet, I just hope to find some general solution with some constants/coefficients that can be determined from
the boundary condition to be fixed or 'chosen' later. By naive counting, may be wrong though, the equations are 2nd order in y and 1st order in x and there are two functions to solve,
we need 6 boundary conditions, but Mathematica solution requires 13 constants here, a mismatch.

I try to another approach;

I rewrite the two equations into one PDE for u[x,y] and obtain the following 4th order in y and 2nd order in x DE, in Mathematica notations


DSolve[vf*vf*D[D[u[x, y], x], x] + (el*vf*H*y/c - Es)^2*u[x, y] -
64.0*d0*d0/pf^4*D[D[D[D[u[x, y], y], y], y], y] == 0,
u[x, y], {x, y}]


I assume (guess) solution of the form u[x,y] = Exp[i*k*x] * P(y) Exp(-(y-y0)^2/(2 s*s))

where P(y) is some polynomial in y (not yet known, to be determined)
The reason is, the equation is 2nd order in x (a typical Schrodinger equation for free particle) and 4th order in y with dependence on (y-y0)^2.
Substituting this guess solution, I obtain ODE for P(y)

DSolve[(D[D[D[D[P[y],y],y],y],y]-4.0/s^4*(y-y0)*D[D[D[P[y],y],y],y]-6.0*(1/s^2-1/s^4*(y-y0)^2)*D[D[P[y],y],y]+(12.0/s^4*(y-y0)-4.0/s^6*(y-y0)^3)*D[P[y],y]+(3.0/s^4-6.0/s^6*(y-y0)^2+(y-y0)^4/s^8)*P[y])*64.0*d0*d0/pf^4+(k^2*vf^2-(ec*vf*H/c)^2*(y-y0)^2)*P[y]
0,P[y],y]

Again I try using Mathematica to solve this but it gives up, it doesn't give answer, just returning the original equation instead.

So, I still couldn't solve this problem after several days of effort. Anyone very expert in differential equations who can see what the solution should be, perhaps involving some special or oher non-trivial functions?
Please suggest solution.

Thanks in advance,

Urkel
 
Physics news on Phys.org
  • #2
Looks too messy to me. Also, don't use capital letters in Mathematica as the first letter for a symbol name since it may conflict with built-in commands which are all capitalized. This is what I'd do: strip away all the constants or set to one or whatever, then trying to solve that. This is what a simpler version looks like to me:

[tex]\frac{\partial u}{\partial x}-\frac{\partial^2 v}{\partial y^2}+(y-1)u=0[/tex]

[tex]\frac{\partial v}{\partial x}+\frac{\partial^2 u}{\partial y^2}+yv=0[/tex]

Suppose that's it. Then I'd try and solve that. I tried DSolve and it can't do it. I'm pessimistic it would be able to do so for a more complicated version but it's possible. I'm not familiar with any technique to solve it by hand but perhaps others here know or the literature would be helpful.

If not, I'd try NDSolve for a numerical solution and just for now, use very simple boundary and initial conditions.

If numerical is acceptable, then I'd get a simple solution "working", meaning I have high confidence it's right, then I would begin adding the original formulation step-wise, get that working, then add more, and hopefully build my way to the problem I want.
 
Last edited:
  • #3
I have many different versions of ODE/PDE that describe this same problem.

A simple version but which is not yet solved is this 4th order nonlinear ODE

a*f(y) + b*(y-y0)^2*f(y) + c*d^4 f(y)/ dy^4 = 0

where a, b, c and y0 are all constants.

I hope this is nicer to look at than the lengthy problem description above.

I find Mathematica couldn't give analytical solution to this though.
I also Fourier transform this equation and get

p*F(ky) + q * d^2 F(ky)/dky^2 + r * d F(ky)/dky + s ky^4 F(ky) = 0

where p, q, r and s are constants. Unfortunately, it's still not analytically solvable by Mathematica. I don't have Maple or Matlab or other software. I hope someone who does have them can solve this problem. In this case, I indeed expect analytical rather than numerical solution.
 

Related to Two coupled Sturm-Liouville Eigenvalue Problems in 2-D

1. What is the significance of Two coupled Sturm-Liouville Eigenvalue Problems in 2-D?

Two coupled Sturm-Liouville Eigenvalue Problems in 2-D are a type of mathematical model used to study the behavior of two interacting physical systems. This model is commonly used in physics, engineering, and other scientific fields to understand the dynamics and properties of coupled systems.

2. How are the eigenvalues and eigenfunctions of these coupled problems related?

The eigenvalues and eigenfunctions of the coupled Sturm-Liouville problems are related by a set of coupled equations. These equations describe the interactions between the two systems and determine the unique solutions for the eigenvalues and eigenfunctions.

3. What are the applications of Two coupled Sturm-Liouville Eigenvalue Problems in 2-D?

This type of problem has many applications in physics, such as studying the behavior of coupled oscillators, coupled electrical circuits, and coupled chemical reactions. It is also commonly used in engineering to analyze coupled systems in mechanical, electrical, and fluid dynamics.

4. How are these problems solved?

There are various techniques for solving Two coupled Sturm-Liouville Eigenvalue Problems in 2-D, including analytical methods such as separation of variables and numerical methods such as finite element analysis. The specific approach used will depend on the specific problem and its complexity.

5. What is the importance of studying coupled systems in 2-D?

Studying coupled systems in 2-D allows for a better understanding of the interactions and relationships between physical systems. This knowledge can be applied in various fields to improve the design and function of systems, as well as to predict and control their behavior.

Similar threads

  • Differential Equations
Replies
2
Views
1K
Replies
6
Views
1K
  • Differential Equations
Replies
2
Views
2K
  • Differential Equations
Replies
2
Views
2K
  • Differential Equations
Replies
2
Views
2K
Replies
1
Views
2K
Replies
65
Views
2K
  • Differential Equations
Replies
2
Views
1K
Replies
13
Views
1K
  • Differential Equations
Replies
3
Views
1K
Back
Top