MHB Understanding Two Graph Theory Problems

Click For Summary
The discussion centers on two graph theory problems. The first problem addresses the definition of a tree, confirming that if there is only one simple path between any two vertices in graph G, then G is indeed a tree. The second problem questions the conditions under which complete bipartite graphs are also complete graphs, specifically asking for which values of m and n in K_{m,n} the graph is equivalent to K_{m+n}. It is suggested that the completeness may depend on whether m and n can be zero. Clarifications and proofs for both problems are sought by the original poster.
Puzzles
Messages
21
Reaction score
0
Hi!

I'm struggling with these two problems:

1. If for whichever two vertices a and b in the graph G there is only one simple path from a to b, then the graph is a tree.

Eh... isn't this part of the definition for a tree? I really don't even know where to start with proving this statements.

2. Find which complete bipartite graphs are complete.

What does it mean which COMPLETE bipartite graphs are complete? Can a complete bipartite graph not be complete?

Any help is very much appreciated!
 
Physics news on Phys.org
There are several equivalent definitions of a tree. Some of them are:
  1. A connected acyclic graph.
  2. A graph where every two vertices are connected by a single simple path.
  3. A connected graph where every edge is a bridge (i.e., its removal makes the graph disconnected).
  4. A connected graph with $n$ vertices and $n-1$ edges.
  5. An acyclic graph with $n$ vertices and $n-1$ edges.

Concerning the second problem, a complete graph $K_n$ on $n$ vertices is a graph that has an edge between every pair of vertices. So I think the question means, for which $m$ and $n$ the complete bipartite graph $K_{m,n}$ is also $K_{m+n}$. The answer probably depends on whether $m$ and $n$ in $K_{m,n}$ can be zero.
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
7K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K