Verify that ## A(225)\geq 1 ##

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The discussion confirms that \( A(225) \geq 1 \) by evaluating the sum of real-valued nonprincipal characters \( \chi \) modulo 16 for the divisors of 225. The divisors identified are \( d = \{ 1, 3, 5, 9, 15, 25, 45, 75, 225 \} \). The calculation shows that \( A(225) = \sum_{d \mid 225} \chi(d) = 3 \), which meets the condition \( A(225) \geq 1 \). The characters involved include \( \chi(1) = 1 \), \( \chi(9) = 1 \), and \( \chi(15) = 1 \), leading to the conclusion that the sum is valid and correctly computed.

PREREQUISITES
  • Understanding of divisor functions and notation, specifically \( d \mid n \).
  • Familiarity with real-valued nonprincipal characters in number theory.
  • Knowledge of modular arithmetic, particularly modulo 16.
  • Ability to perform summation of functions over divisors.
NEXT STEPS
  • Study the properties of nonprincipal characters in number theory.
  • Learn about divisor sums and their applications in analytic number theory.
  • Explore the implications of character sums in the context of Dirichlet characters.
  • Investigate the relationship between characters and L-functions.
USEFUL FOR

Mathematicians, number theorists, and students studying modular forms or character theory will benefit from this discussion, particularly those interested in divisor functions and their properties.

Math100
Messages
817
Reaction score
230
Homework Statement
For each real-valued nonprincipal character ## \chi\pmod {16} ##, verify that ## A(225)\geq 1 ##.
Relevant Equations
Let ## \chi ## be any real-valued character mod ## k ## and let ## A(n)=\sum_{d\mid n}\chi(d) ##. Then ## A(n)\geq 0 ## for all ## n ##, and ## A(n)\geq 1 ## if ## n ## is a square.
Let ## n=225 ## and ## d ## be the divisors of ## n ##.
Then ## d=\left \{ 1, 3, 5, 9, 15, 25, 45, 75, 225 \right \} ##.
Note that the real-valued nonprincipal characters ## \chi\pmod {16} ## are ## \chi(1), \chi(7), \chi(9), \chi(15) ##.
Observe that ## \chi(1)=1, \chi(7)=\pm 1, \chi(9)=\pm 1, \chi(15)=\pm 1 ##.
Thus ## A(225)=\sum_{d\mid 225}\chi(d)=\chi(1)+\chi(9)+\chi(15)=1+1+1=3\geq 1 ##.
Therefore, ## A(225)\geq 1 ##.

\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline n & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline \chi_{1}(n) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\\
\hline \chi_{2}(n) & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
\hline \chi_{3}(n) & 1 & i & i & 1 & -1 & -i & -i & -1 \\
\hline \chi_{4}(n) & 1 & -i & i & -1 & -1 & i & -i & 1 \\
\hline \chi_{5}(n) & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
\hline \chi_{6}(n) & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
\hline \chi_{7}(n) & 1 & i & -i & -1 & -1 & -i & i & 1 \\
\hline \chi_{8}(n) & 1 & -i & -i & 1 & -1 & i & i & -1 \\
\hline
\end{array}
 
Last edited:
Physics news on Phys.org
The real valued characters are ##\chi_1,\chi_2,\chi_5,\chi_6## where ##\chi_1## is the principal character. I think you left out a calculation step which is confusing here. It should be ...
\begin{align*}
A(225)&=\sum_{d|225}\chi_2(d)=2 [\chi_2(1)+\chi_2(3)+\chi_2(9)]+\chi_2(5)+\chi_2(13)+\chi_2(15)\\
&=2[1-1+\chi_2(9)]+\chi_2(5)+1-1\\
&=2\chi_2(9)+\chi_2(5)=3
\end{align*}
and the same for ##\chi_5## and ##\chi_6.##
 
  • Like
Likes   Reactions: Math100

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
635