What Are the Advantages of Earning a Math Degree?

  • Context: MHB 
  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Degree
Click For Summary
SUMMARY

The discussion centers on the advantages of earning a math degree, highlighting personal experiences and challenges faced by individuals in advanced mathematics courses. Participants mention the difficulty of courses like Topology, with one user noting the challenge of memorizing numerous theorems. The conversation also touches on the potential for teaching math at the high school level and the interest in transitioning careers into mathematics or physics. Overall, the discussion emphasizes the value of a math degree in various professional contexts and the intellectual rigor of advanced math courses.

PREREQUISITES
  • Understanding of advanced mathematics concepts such as Topology and Abstract Algebra.
  • Familiarity with geometric proofs and their applications.
  • Knowledge of the educational pathways for teaching mathematics in high school.
  • Awareness of career transitions into mathematics or related fields.
NEXT STEPS
  • Research the curriculum and requirements for a degree in Mathematics.
  • Explore the challenges and methodologies in studying Topology.
  • Learn about the principles and applications of Abstract Algebra.
  • Investigate the qualifications needed to teach high school mathematics.
USEFUL FOR

Students considering a math degree, educators looking to teach mathematics, and professionals exploring career changes into mathematics or physics.

mathdad
Messages
1,280
Reaction score
0
How many here have a math degree? If you do, why did you major in math?
 
Physics news on Phys.org
RTCNTC said:
How many here have a math degree? If you do, why did you major in math?

I do not have a math degree.
Instead I have a degree in computer science.
And I 'almost' have a master's degree in both math and physics.
I chose to major in computer science because that's where my interest lied, and where I could make a living.
I am here on this math site now because I'm still interested in both math and physics even though I'm not using them for my living.
 
I like Serena said:
I do not have a math degree.
Instead I have a degree in computer science.
And I 'almost' have a master's degree in both math and physics.
I chose to major in computer science because that's where my interest lied, and where I could make a living.
I am here on this math site now because I'm still interested in both math and physics even though I'm not using them for my living.

1. Any students in your math and physics over 50?

2. Can you teach math in high school?

3. What is the toughest math course you have taken?

4. Do you remember how to solve direct and indirect geometric proofs?
 
RTCNTC said:
1. Any students in your math and physics over 50?

I don't recall. There were some older people around, but at the time I wasn't paying attention to that.
And anyway, people with a job wouldn't have attended the lectures I did.
There were special evening lectures and such for them.
I have tutored people over 40 (and I think some over 50) though who made a career change.

RTCNTC said:
2. Can you teach math in high school?

Yes.

RTCNTC said:
3. What is the toughest math course you have taken?

Topology.

RTCNTC said:
4. Do you remember how to solve direct and indirect geometric proofs?

Not sure what you mean by those, but I'll just say yes.
 
I like Serena said:
I don't recall. There were some older people around, but at the time I wasn't paying attention to that.
And anyway, people with a job wouldn't have attended the lectures I did.
There were special evening lectures and such for them.
I have tutored people over 40 (and I think some over 50) though who made a career change.
Yes.
Topology.
Not sure what you mean by those, but I'll just say yes.

By geometric proofs I mean proving, for example that triangle ABC is congruent to triangle DEF given a diagram with information about both triangles.
 
RTCNTC said:
By geometric proofs I mean proving, for example that triangle ABC is congruent to triangle DEF given a diagram with information about both triangles.

Sure. I'll stick to 'yes'.
 
You are not the only person to confirm that topology is really hard. Soroban told me the same thing in 2006. He said topology is insane. I am not intetested in learning topology but I am curious what makes topology such a tough course.

I think Soroban said that memorizing hundreds of theorems was the hardest part for him. What made it hard for you? Is it too abstract? Speaking of abstract material, how about abstract algebra? Have you ever taken that course?
 
RTCNTC said:
You are not the only person to confirm that topology is really hard. Soroban told me the same thing in 2006. He said topology is insane. I am not intetested in learning topology but I am curious what makes topology such a tough course.

I think Soroban said that memorizing hundreds of theorems was the hardest part for him. What made it hard for you? Is it too abstract? Speaking of abstract material, how about abstract algebra? Have you ever taken that course?

Topology was hard for me due to its abstract nature and requirements to study and learn its proofs by heart.
I consider abstract algebra to be easy in comparison. I can help you there if needed.
 
I thank you for the offer to help me with abstract algebra but as you can see from my many precalculus posted questions, I am not ready to tackle abstract or modern algebra. My goal here is to learn precalculus material sufficiently well to step into a calculus textbook. My favorite courses are algebra 1, algebra 2, geometry, trigonometry, precalculus and very curious about calculus.
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 20 ·
Replies
20
Views
6K
  • · Replies 16 ·
Replies
16
Views
4K
Replies
22
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K