MHB What Factors Influence the Number of Connected Components in Random Graphs?

repoman1
Messages
2
Reaction score
0
Having a hard time with this problem. Can anyone guide me in the correct direction?

Random graphs are a fascinating subject of applied and theoretical research. These can be generated with a fixed vertex set V and edges added to the edge set E based on some probability model, such as a coin flip. Speculate on how many connected components a random graph might have if the likelihood of an edge (v1,v2) being in the set E is 50%. Do you think the number of components would depend on the size of the vertex set V? Explain why or why not.
 
Physics news on Phys.org
I assume the likelihood of an edge $(v_1,v_2)$ is the same for all pairs of vertices $(v_1,v_2)$, and the presence of an edge is independent of other edges. Suppose a random graph with these properties has two connected components with $m$ and $n$ vertices, respectively. There are $mn$ edges that are missing between these two components, and the probability of that is $2^{-mn}$, which is exceedingly small for large $m$, $n$.

For more details, consult Wikipedia about Erdős–Rényi model of random graph generation. It turns out that if $p<\frac{(1-\varepsilon)\ln n}{n}$ for some $\varepsilon>0$, then a random graph with $n$ vertices where the probability of an edge is $p$ will almost surely be disconnected, and if $p>\frac{(1+\varepsilon)\ln n}{n}$, then a random graph with $n$ vertices will almost surely be connected. Since $\frac{\ln n}{n}\to0$ as $n\to\infty$, the threshold probability for connectedness is very small for large graphs, certainly smaller than 0.5.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top