What is the determinant of a special matrix involving trigonometric functions?

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2017
Click For Summary
SUMMARY

The determinant of the matrix \( I + A \), where \( I \) is the identity matrix and \( A \) is defined by \( a_{jk} = \cos(j\theta + k\theta) \) for \( n \geq 3 \) and \( \theta = \frac{2\pi}{n} \), can be evaluated using properties of trigonometric functions and determinants. This problem was originally presented as Problem B-5 in the 1999 William Lowell Putnam Mathematical Competition. The correct solution was provided by user Opalg, demonstrating the application of linear algebra techniques to trigonometric matrices.

PREREQUISITES
  • Understanding of matrix determinants
  • Familiarity with trigonometric functions, specifically cosine
  • Knowledge of linear algebra concepts
  • Experience with mathematical competitions, particularly the Putnam Competition
NEXT STEPS
  • Study the properties of determinants in relation to trigonometric matrices
  • Learn about the applications of the cosine function in linear algebra
  • Explore advanced topics in matrix theory, including eigenvalues and eigenvectors
  • Review previous Putnam problems to understand common techniques used in mathematical competitions
USEFUL FOR

Mathematicians, students preparing for mathematical competitions, and anyone interested in the intersection of linear algebra and trigonometric functions will benefit from this discussion.

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Here is this week's POTW, shamefully late. I can only say I will promise to do better in the next few weeks, and even try to catch up with the missed week:

-----

For an integer $n\geq 3$, let $\theta=2\pi/n$. Evaluate the determinant of the $n\times n$ matrix $I+A$, where $I$ is the $n\times n$ identity matrix and $A=(a_{jk})$ has entries $a_{jk}=\cos(j\theta+k\theta)$ for all $j,k$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Re: Problem Of The Week # 258 - Apr 10, 2017

This was Problem B-5 in the 1999 William Lowell Putnam Mathematical Competition.

Congratulations to Opalg for his correct solution, which follows:

Let $\omega = e^{2\pi i/n}$ and define $n\times n$ matrices $\Omega, \overline{\Omega}$ with $(j,k)$ entries $\omega^{j+k}$ and $\omega^{-(j+k)}$ respectively, so that $$\Omega = \begin{bmatrix}1&\omega &\omega^2 &\ldots &\omega^{n-1} \\ \omega &\omega^2 &\omega^3 &\ldots &1 \\ \vdots& \vdots& \vdots& \ddots \\ \omega^{n-1} &1&\omega &\ldots &\omega^{n-2} \end{bmatrix}, \qquad \overline{\Omega} = \begin{bmatrix}1&\omega^{-1} &\omega^{-2} &\ldots &\omega^{-(n-1)} \\ \omega^{-1} &\omega^{-2} &\omega^{-3} &\ldots &1 \\ \vdots& \vdots& \vdots& \ddots \\ \omega^{-(n-1)} &1&\omega^{-1} &\ldots &\omega^{-(n-2)} \end{bmatrix}.$$

Note: I am numbering the rows and columns from $0$ to $n-1$, so that the top left-hand element of each matrix is $\omega^0 =1$. If the rows and columns are numbered from $1$ to $n$ then the top left-hand elements would be $\omega^2$ and $\omega^{-2}$, which seems less natural. But the numbering convention does not affect the answer to the problem, which would be the same in either case.

Both matrices $\Omega, \overline{\Omega}$ have rank $1$, because in each case every column is a scalar multiple of the first column. Denote these first columns by $e_1 = (1,\omega ,\omega^2,\ldots ,\omega^{n-1})$, $e_2 = (1,\omega^{-1} ,\omega^{-2},\ldots ,\omega^{-(n-1)})$ (writing them as row vectors for convenience, although they are really column vectors). Let $V$ be the two-dimensional subspace of $\Bbb{C}^n$ spanned by $e_1$ and $e_2$. The linear transformations represented by the matrices $\Omega, \overline{\Omega}$ both have range in $V$. Denote by $\Omega\big| _V, \overline{\Omega}\big|_V$ their restrictions to $V$. Using the facts that $$\sum_{k=0}^{n-1}\omega^k\omega^{-k} = n$$ and $$\sum_{k=0}^{n-1}\omega^{2k} = 0$$, you can check that $\Omega\big| _V(e_1) = 0$, $\Omega\big| _V(e_2) = ne_1$, $\overline{\Omega}\big| _V(e_1) = ne_2$ and $\overline{\Omega}\big| _V(e_2) = 0.$ So the matrices of these transformations with respect to the basis $\{e_1,e_2\}$ of $V$ are $$ \Omega\big| _V = \begin{bmatrix}0&n\\0&0 \end{bmatrix},\qquad \overline{\Omega}\big| _V = \begin{bmatrix}0&0\\n&0 \end{bmatrix}.$$

Turning now to the given matrix $A$, notice that $A = \frac12(\Omega + \overline{\Omega})$. Therefore the restriction of $A$ to $V$ has matrix $\frac n2 \begin{bmatrix}0&1\\1&0 \end{bmatrix}$ (with respect to the basis $\{e_1,e_2\}$). The eigenvalues of $ \begin{bmatrix}0&1\\1&0 \end{bmatrix}$ are $\pm1$. Also, $A$ has rank $2$, so it can only have two nonzero eigenvalues. It follows that the eigenvalues of $A$ are $0$ (with multiplicity $n-2$) and $\pm\frac n2.$ Therefore the eigenvalues of $I+A$ are $1$ (with multiplicity $n-2$) and $1\pm\frac n2.$ Since the determinant is the product of the eigenvalues, the conclusion is that $\det A = \bigl(1+\frac n2\bigr)\bigl(1-\frac n2\bigr) = 1 - \frac{n^2}4.$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
2
Views
2K