MHB What is the maximum distance between two points in a square of side length 1?

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2016
Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
93
Here is this week's POTW:

-----

Show that if $5$ points are all in, or on, a square of side length $1$, then some pair of them will be no further than $\dfrac{\sqrt{2}}{2}$ apart.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to greg1313 and Fallen Angel for their correct solutions. greg1313's solution follows:

Construct four quarter circles with radius $\dfrac{\sqrt2}{2}$, each with its centre on a vertex of the square. Notice that there is no area on the square that is not contained by, or on, a quarter circle. Hence one cannot place more that four points in or on the square without such a point being at most $\dfrac{\sqrt2}{2}$ from another point.
 
Back
Top